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Abstract. The computable dimension of a structure counts the number of

computable copies up to computable isomorphism. In this paper, we con-

sider the possible computable dimensions for various classes of computable
ordered fields. We show that computable ordered fields with finite transcen-

dence degree are computably stable, and thus have computable dimension 1.

We then build computable ordered fields of infinite transcendence degree which
have infinite computable dimension, but also such fields which are computably

categorical. Finally, we show that 1 is the only possible finite computable

dimension for any computable archimedean field.

1. Introduction

Whenever studying the computable content of an algebraic structure, the first
step is to present the structures in a computable way. This is often done by cod-
ing the elements of the structure’s domain by the natural numbers, and ensuring
that the functions and relations of the structure are computable. Those struc-
tures which admit such a coding are the computable ones. But for all of these,
there are multiple ways in which we could have represented the elements of the
domain. A fundamental question is whether our choice in this representation is
important - might picking different computable copies of the structure give us dif-
ferent computable-theoretic results about the structure? For example, if, as in this
paper, the structure is an ordered field, might one computable copy of the field
have a computable transcendence basis, while another computable copy have only
non-computable transcendence bases?

One way to know whether we need worry about this is to know the computable
dimension of the structure.

Definition 1.1. The computable dimension of a computable structure A is the
number of distinct computable copies (presentations) of the structure, up to com-
putable isomorphism.

Definition 1.2. A computable structure A is computably categorical if every com-
putable structure B isomorphic to A is computably isomorphic to A. That is, if
the computable dimension of A is 1.

If we require that every isomorphism is computable, then we say the structure
is computably stable:
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Definition 1.3. A computable structure A is computably stable if for every com-
putable structure B classically isomorphic to A, every isomorphism f : A → B is
in fact a computable isomorphism.

Computable dimension has been well studied in a variety of structures, including
Boolean algebras [5], linear orders [21], trees [12], abelian groups [4], graphs with
finite components [3], etc. For many structures, there is an algebraic criterion which
determines the computable dimension. For example, if G is a computable ordered
abelian group, then G is computably categorical if and only if it has finite rank [8].
For many structures, computable dimension can only be 1 or ω. However, there
are examples of partially ordered sets, graphs, lattices and nilpotent groups which
have computable dimension n for each 1 ≤ n ≤ ω (see [5] and [6]).

A notable gap exists for fields, where the question of computable dimension has
been particularly difficult to answer. It is known for algebraically closed fields,
as well as real closed fields, that the field is computably categorical if and only
if the transcendence degree of the field is finite and if the transcendence degree
is infinite, then the computable dimension is infinite (see [16] and [19]). Little is
known beyond these two simplest of examples, although it is not as simple as looking
at transcendence degree: there are fields with infinite transcendence degree which
are computably categorical [18], and fields with finite transcendence degree which
are not [17]. The question of whether there are any fields with finite computable
dimension greater than 1 appears to be settled in the affirmative thanks to upcoming
work of Miller, Park, Poonen, Schoutens, and Shlapentokh.

The purpose of this paper is to explore whether insight might be gained by con-
sidering ordered fields. After reviewing some preliminaries in section 2, we show
in section 3 that all computable ordered fields with finite transcendence degree are
computably categorical (in fact, computably stable and also relatively computably
categorical). In section 4 we consider computable dimension when the transcen-
dence degree of the ordered field is infinite. We show that in the algebraically
simplest case the computable dimension is indeed ω, but that there are examples
of computably categorical ordered fields as well. While we stop short of deter-
mining an algebraic criterion for the computable dimension of ordered fields with
infinite transcendence degree, we are able to show that for archimedean fields, the
computable dimension cannot be anything besides 1 or ω. This is done in section
5.

We conclude in section 6 with some remaining questions and ideas for further
research.

2. Preliminaries

Before considering any computability theory, we review some classical definitions
and results from the theory of ordered fields. For a more comprehensive introduc-
tion, see the chapter 6 in [10], chapter 11 in [11], or [20]. Throughout the paper,
all fields have characteristic 0 (as all ordered fields do) and are countable (as all
computable fields are).

Definition 2.1. Let F be a field. An ordering on F is a linear order ≤ (i.e., a
total, transitive, antisymmetric binary relation) such that for all a, b, c ∈ F ,

(1) a ≤ b =⇒ a+ c ≤ b+ c, and
(2) a ≤ b, 0 ≤ c =⇒ ac ≤ bc.
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F is orderable if there exists an ordering ≤ on F . An ordered field is a pair (F,≤).

Related to ordered fields are real fields.

Definition 2.2. A field F is formally real (or simply real) provided −1 is not a
sum of squares in F .

Classically, a field is orderable if and only if it is formally real. However, this does
not hold effectively as there are computable real fields which have no computable
ordering. In fact, given any Π0

1 class C there is a computable real field for which
the space of orderings is in Turing degree preserving bijection with C [16].

Given a formally real field F , the algebraic closure of F is no longer real since
x2 +1 = 0 has a root in the algebraic closure, making −1 a square. If we consider a
maximal algebraic extension of a real field which is still real, we get a real closure.

Definition 2.3. A field F is real closed if F is formally real and no algebraic
extension of F is formally real. A real closure RF of a field F is a real closed field
which is algebraic over F .

Real closed fields have a unique ordering: the positive elements are simply those
which have square roots in the field. This is enough to determine the ordering
on the field, as a < b if and only if b − a is positive. Moreover, if we consider a
computable real closed field (the field operations are computable), the order can
be computably determined: search the field for the square root of either b − a or
a − b. Thus when dealing with real closed fields, we will freely use order notation
(including intervals) even though “<” is not part of the signature of real closed
fields.

Every formally real field has a real closure, although it need not be unique as
a given formally real field may admit multiple orderings. For example, Q(

√
2) is

formally real with two orderings: one in which 0 <
√

2 and the other in which√
2 < 0. However, if we consider a formally real field and specify the order (that is,

consider an ordered field) then the unique order on the real closed field must extend
the order on the base field. Thus uniqueness of the real closure is guaranteed:

Theorem 2.4 (Artin-Schreier). Any ordered field (F,≤) has a unique (up to iso-
morphism) real closure.

Beyond their unique orderings, real closed fields are nice for a variety of reasons.
In a real closed field R, every polynomial of odd degree with coefficients in R has a
root in R. Also, R(

√
−1) is necessarily the algebraic closure of R. Real closed fields

are also nice from a model theory point of view: the theory of real closed fields (in
the language of ordered rings) is a complete, decidable theory (see section 3.3 in
[15]). This implies that any two real closed field are elementarily equivalent. Since
the real numbers, as an ordered field, are a real closed field, this says that any real
closed field shares all the first order algebraic and order-theoretic properties of R
(the “Tarski-Principle”).

Another nice property we will make heavy use of is that it is possible to determine
the number of roots of a given polynomial in a real closed field. There are multiple
ways to do this. One way is to use the fact that the theory of real closed fields
is complete and decidable. Alternatively, we can appeal to the purely algebraic
Sturm’s Theorem, which we now discuss in more detail.



4 LEVIN

Theorem 2.5 (Sturm’s Theorem). Let p(x) be any polynomial with coefficients in
a real closed field R. Then there is a sequence of polynomials

p0(x), p1(x), . . . , pn(x)

such that if p(α) 6= 0 and p(β) 6= 0, then the number of distinct roots of p(x) in
the interval [α, β] is Vα − Vβ, where Vγ denotes the number of variations in sign of
{p0(γ), p1(γ), . . . , pn(γ)}.

The polynomials p0(x), p1(x), . . . , pn(x) can be found effectively. In fact, p0(x) =
p(x), p1(x) = p′(x) and for i ≥ 2, pi(x) is the negative remainder after dividing
pi−1(x) by pi−2(x). Since we are concerned with computable real closed fields, we
can to calculate pi(γ) for any γ in R and i = 0, . . . , n. Thus we can effectively find
Vγ , and as such, the number of roots of p(x) between any α and β which are not
roots of p(x). Further, there is a bound (due to Cauchy) on the roots of a given
polynomial, so the total number of roots of a given polynomial can be effectively
determined. (For a detailed discussion of Sturm’s Theorem, and its proof, see [10].)

The real closure of a field is an algebraic extension, but we also consider field ex-
tensions which are not algebraic. Recall that for any field F (ordered or otherwise)
a set S ⊆ F is algebraically dependent if for some n ∈ N there is a nonzero poly-
nomial p ∈ Q[x1, . . . , xn] and distinct s1, . . . , sn ∈ S such that p(s1, . . . , sn) = 0.
S is algebraically independent if it is not algebraically dependent. A maximal al-
gebraically independent set in F is called a transcendence basis for F over Q. The
transcendence degree of a field F is the cardinality of some transcendence basis for
F . Every non-algebraic extension field of Q has a transcendence basis over Q, and
all transcendence bases of a given field have the same cardinality, so these notions
are well defined (see [9]). For any field F , if F is an extension of Q and has a
transcendence basis S, then F is algebraic over the field Q(S). The field Q(S) is
a purely transcendental extension of Q, with a pure transcendence basis S. Note
that every purely transcendental extension has a pure transcendence basis, but also
has transcendence bases which are not pure. (All of this also works for extensions
of arbitrary fields instead of Q, but we will only need to consider this simplest of
cases.)

Finally, we consider the possibility of infinite elements in an ordered field.

Definition 2.6. For any element a in an ordered field F , define the absolute value
of a by

|a| =

{
a if 0 ≤ a
−a if a < 0

Definition 2.7. An ordered field F is archimedean if for all a ∈ F there is some
n ∈ N such that |a| ≤ n.

Now to computability theory. We assume familiarity with the basic ideas from
the subject (otherwise, see [22]). Intuitively, an ordered field will be computable if
the operations + and · are computable, and the relation ≤ is computable. Specifi-
cally, we work in the language of ordered rings, so a field F will have a domain |F |
and there will be binary function symbols +F and ·F , a binary relation ≤F , and
distinguished elements 0F and 1F . For F to be a computable ordered field, |F | will
be a computable subset of N, with +F and ·F partial computable functions from
|F | × |F | to |F |, and ≤F⊆ |F | × |F | a computable relation. Additionally, we are
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given the elements 0F and 1F computably, although these can always be found uni-
formly by searching through the elements of the field. Thus the subfield Q (ordered
fields have characteristic zero) is computably enumerable (c.e.) for all computable
ordered fields. Of course we want F to be an ordered field, so the usual ordered
field axioms must be satisfied. Note that since the domain of F is a subset of N,
computable ordered fields (and in general all computable algebraic structures) are
necessarily countable.

3. Ordered Fields with Finite Transcendence Degree

We show that every computable ordered field with finite transcendence degree
is computably stable. We begin by verifying the same result for computable real
closed fields.

Lemma 3.1. Any computable real closed field with finite transcendence degree is
computably stable.

Proof. Let R = {a0, a1, . . .} be a computable real closed field with finite tran-

scendence degree. Let R̂ be a computable real closed field isomorphic to R via
the (classical) isomorphism f . Without loss of generality, assume {a0, . . . , ak−1}
is a transcendence basis for R and that ak is the multiplicative identity. Then

{f(a0), . . . , f(ak−1)} is a transcendence basis for R̂ and f(ak) is the multiplicative

identity in R̂. Let E = Q(a0, . . . , ak−1) ⊆ R. We will show that f is in fact a
computable isomorphism.

Note first that we can computably determine f(t) for any t ∈ E. This is possible
since we know the finite information f(a0), . . . , f(ak−1) and f(ak) . Every other
element t of E is some arithmetic combination (sum, difference, product, or quo-
tient) of these finitely many elements. Once we find what combination gives us t,

we can form that same combination in R̂, using the fact that f is an isomorphism.
Now suppose p(x) is a polynomial in E[x], say

p(x) = c0 + c1x+ · · ·+ cnx
n.

Since c0, . . . , cn are in E, we can effectively find the polynomial

p̂(x) = f(c0) + f(c1)x+ · · ·+ f(cn)xn

in f(E)[x].
To compute f(t) for t ∈ R, we first search for and find a polynomial p(x) ∈ E[x]

such that p(t) = 0. There must be one since R is algebraic over E. Once found,
we determine the number of roots of p(x) which lie in R (which is the same as the

number of roots of p̂(x) which lie in R̂). This can be done either by using Sturm’s
theorem, or the completeness of the theory of real closed fields. Once we know the
number of roots of p(x), we simply search through R to find all of them. Using the
computable order on R, we find m such that there are exactly m roots of p(x) less

than t. Next, we search through R̂ to find all the roots of p̂(x), and specifically find

the root t̂ which is greater than exactly m other roots. Since f is an isomorphism,
it must be that f(t) = t̂, which we have now found. �

Every ordered field has a unique (up to isomorphism) real closure. If F is a
computable ordered field, then there is a computable presentation RF of its real
closure, and a computable embedding from F to RF (see [14]). We will use this to
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prove our result, but we need to know that isomorphisms behave nicely when we
pass to real closures. The next lemma is purely algebraic.

Lemma 3.2. Let F and F̂ be ordered fields and f : F → F̂ be an isomorphism.

Let R and R̂ be real closures of F and F̂ respectively. Then f extends to a unique

isomorphism g : R→ R̂.

Proof. Define g as follows. First, for every a ∈ F , let g(a) = f(a). Now let a be
an element of R \ F . Since R is an algebraic extension of F , there is a polynomial
p(x) ∈ F [x] such that p(a) = 0. Say p(x) = c0 + c1x + · · · + cnx

n, and define
p̂(x) = f(c0) + f(c1)x+ · · ·+ f(cn)xn. Let a0 < a1 < · · · < am be the roots of p(x)

in R and let b0 < b1 < · · · < bm be the roots of p̂(x) in R̂. Define g(ai) = bi for
i = 0, . . . ,m. Note that there really must be the same number of roots of p(x) in

R as there are roots of p̂(x) in R̂. This follows from Sturm’s Theorem: the number
of sign changes in the sequence for p(x) will be the same as the number of sign
changes in the sequence for p̂(x), since f is an isomorphism.

Clearly g is an isomorphism. Moreover, since any isomorphism extending f must
send the roots of a polynomial p(x) to roots of p̂(x), and in the correct order, we
see that g is unique. �

We are now ready to prove the main result of this section.

Theorem 3.3. Any computable ordered field with finite transcendence degree is
computably stable.

Proof. Let F and F̂ be computable ordered fields with finite transcendence degree

and f : F → F̂ an isomorphism. Let R and R̂ be computable copies of the real

closures of F and F̂ respectively such that the embeddings ψ : F ↪→ R and ψ̂ :

F̂ ↪→ R̂ are computable. By Lemma 3.2, there is an isomorphism g : R→ R̂ which
extends f . By Lemma 3.1, we know that g is in fact a computable isomorphism.

To compute f(t) for t ∈ F , we simply find ψ(t), and then g(ψ(t)). Since g

extended f , we know that g(ψ(t)) = ψ̂(f(t)). But now we can just search through

F̂ to find an element t̂ such that ψ̂
(
t̂
)

= g(ψ(t)). Thus we can compute f(t) for
any t ∈ F , so f is a computable isomorphism. �

Realizing that every element of the field can be defined with a formula using a
finite number of parameters (the transcendence basis), leads to a proof of a related
result. We will show that any computable ordered field with finite transcendence
degree is relatively computably categorical.

Definition 3.4. A computable structure A is relatively computably categorical if
for every structure B which is classically isomorphic to A, there is an isomorphism
f : A → B which is computable from B.

To prove the result, we will appeal to a theorem of Ash, Knight, Manasse, and
Slaman [1], and independently Chisholm [2]. We need only the simplest case of the
theorem.

Theorem 3.5 (Ash-Knight-Manasse-Slaman, Chisholm). A structure A is rela-
tively computably categorical if and only if it has a Σ0

1 Scott family.

A structure A has a Σ0
1 Scott family if there is a finite sequence ā ∈ A and a Σ0

1

family of existential formulas ϕi(x, ā) such that



COMPUTABLE DIMENSION FOR ORDERED FIELDS 7

(1) Every b ∈ A satisfies ϕi(x, ā) for at least one i.
(2) If two elements b, c ∈ A satisfy the same ϕi, then there is an automorphism

of F taking b 7→ c which fixes ā.

Lemma 3.6. Let F be a computable ordered field with finite transcendence degree.
Then F has a Σ0

1 Scott family.

Proof. Let ā = 〈a0, a1, . . . , an−1〉 be a transcendence basis for F . Let E = Q(a0, . . . an) ⊆
F . We now enumerate a family of formulas ϕi,j as follows. For each polynomial
pi ∈ E[x], and each j ≤ k, we let ϕi,j(x, ā) be the formula which says that pi has
k roots and x is the jth-least of these k roots. Here k is the actual number of
roots of pi (which can be found computably, using Sturm’s Theorem, for example).
Since we are allowed parameters ā in the formula, such ϕi,j exist for all i and all
j ≤ deg(pi).

We claim that the family of all such ϕi,j is a Σ0
1 Scott family for F . First, note

that the collection is clearly Σ0
1, since we provided an effective enumeration of the

formulas (the polynomials pi can be effectively enumerated). Also, the formulas are
all existential. Now for any b ∈ F , b is the root of some polynomial p(x) ∈ E[x], and
that polynomial is pi for some i. Further, there must be some number j of roots
of p(x) less than b, so b satisfies ϕi,j . Thus condition (1) is satisfied. Condition
(2) is satisfied trivially, since for every ϕi,j , there is no more than one b ∈ F which
satisfies ϕi,j . Therefore {ϕi,j} is a Σ0

1 Scott family for F . �

Combining Lemma 3.6 with Theorem 3.5, we immediately arrive at:

Theorem 3.7. Let F be a computable ordered field with finite transcendence degree.
Then F is relatively computably categorical.

Before leaving the finite transcendence degree case, it is worth pointing out that
these results relied heavily on the fact that our fields are ordered. Indeed, there are
computable algebraic fields which are not computably categorical (see [17]).

4. Ordered Fields with Infinite Transcendence Degree

For computable real closed fields, if the field has infinite transcendence degree,
then the computable dimension is infinite. We wish to extend this result to the
larger class of computable ordered fields with infinite transcendence degree. Real
closed fields are the largest algebraic extension of an ordered field. We now consider
the other extreme: purely transcendental fields. Use pi to denote the ith prime.

Example 4.1. The field Q(e
√
pi)i∈N, under the standard ordering, has computable

dimension ω.

We will verify this example below, but note first that the field really is a com-
putable ordered field with infinite transcendence degree. The transcendence de-
gree is infinite by the Lindermann-Weierstrass Theorem, which guarantees that
{e
√
pi | i ∈ N} is algebraically independent since {√pi | i ∈ N} is linearly indepen-

dent over Q. Also notice that the field is archimedean (it is a subfield of R) and is
a purely transcendental extension of Q. Finally, there is a computable copy of the
field in which {e

√
pi | i ∈ N} is computable. This is accomplished by using formal

power series to approximate the inequalities for the transcendence basis. (A de-
tailed discussion of this field can be found in [13].) Thus the field is a computable,
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archimedean, purely transcendental extension of Q with infinite transcendence de-
gree and a computable pure transcendence basis. We show all such fields have
computable dimension ω.

Theorem 4.2. Let F be a computable archimedean field which is a purely tran-
scendental extension of Q with infinite transcendence degree, for which there is a
computable pure transcendence basis B. Then the computable dimension of F is ω.

The proof will consists of constructing a field F̂ which is ∆0
2-isomorphic, but not

computably isomorphic, to F . This will be enough, by a theorem of Goncharov.

Theorem 4.3 (Goncharov [7]). If a countable structure A has two computable
copies A1 and A2 which are ∆0

2 isomorphic but not computably isomorphic, then
the computable dimension of A is ω.

Our proof rests on our ability to redefine a ∆0
2 isomorphism as we construct

it. At any specific stage of the construction, some finite subset A of F̂ has been
mentioned, and some of these elements B = {b0, b1, . . . , bn} will be intended to
be the transcendence basis. The other elements of A will either be rationals or be
defined in terms of the elements in B. For example, one element a7 might be defined
to be (b0 + 3b1) · b−12 . Additionally, we will have already specified the order on the
elements of A. We cannot change the order, or the algebraic relationships between
the elements of A. To redefine the isomorphism, we convert an element of B to a
rational. Say we want to make b1 rational. Since a7 is defined in terms of b1, we
must also change a7 by picking a rational “close enough” to b1 so that a7 (and all the
other elements defined in terms of b1) remain in the same order among all elements
of A. That this is possible is a purely algebraic result which we prove as a separate
lemma. In what follows we use the following piece of notation: given a quotient of
polynomials p(x̄) over F and a tuple b̄ of the same length as x̄, with bi an element
of the tuple b̄, by p(b̄)bic we will mean the result of replacing all occurrences of bi in
p(b̄) with c. In other words, p(b̄)bic = p(b̄′) where b̄′ = 〈b0, . . . , bi−1, c, bi+1, . . . , bn〉.
Lemma 4.4. Let A be any finite subset of an archimedean field F and let B =
{b0, b1, . . . , bn} ⊆ A. Suppose that for each a ∈ A, there is a quotient of rational
polynomials pa(x̄) containing at most the variables x0, . . . , xn such that a = pa(b̄)
where b̄ = 〈b0, b1, . . . , bn〉. Then for each bi ∈ B, there is a rational c close enough
to bi so that for all a, a′ ∈ A,

pa(b̄) < pa′(b̄) if and only if pa(b̄)bic < pa′(b̄)
bi
c .

Proof. Let A and B be as in the statement of the lemma. Fix bi ∈ B. For each
a ∈ A, consider the function fa(x) = pa(b̄)bix . This is simply the quotient of two
polynomials in a single variable x with coefficients from Q(B). As such, there is
some E ⊆ F containing bi on which fa : E → F is a continuous function. Now for
any a ∈ A, let a1 and a2 be such that a1 < a < a2 and a is the only element of A
between a1 and a2. Consider the interval

Ia =

(
a1 + a

2
,
a+ a2

2

)
∩ fa(E).

Now Ia is an open set (in the subspace topology on fa(E)), and since fa is continu-
ous, f−1a (Ia) is open and contains bi. Similarly for each of the finitely many a ∈ A.
Let

I =
⋂
a∈A

f−1a (Ia).
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This is the intersection of finitely many open sets, so open. Also, I contains bi, so
I must contain an interval about bi. Take c to be any rational in this interval.

This c so selected satisfies the lemma. To see this, note that by the choice of c,
we have fa(c) ∈ Ia. Since fa(c) = pa(b̄)bic , it follows that

pa(b̄) < pa′(b̄) if and only if pa(b̄)bic < pa′(b̄)
bi
c

for all a and a′ in A. �

We are now ready to prove our theorem.

Proof of Theorem 4.2. Let F = {a0, a1, . . .} with a pure transcendence basis {ai0 , ai1 , . . .}.
We build a computable copy F̂ = {b0, b1, . . .} of F along with a ∆0

2 isomorphism

f : F̂ → F . The construction runs in stages, so that by the end of stage s we

will have defined F̂s ⊂ F̂ and fs : F̂s → F . We take F̂ =
⋃
s F̂s and f = lims fs.

Through the construction, we satisfy the following requirements for all i, e, and s:

Pi: lims fs(bi) exists.
Ri: ∃j (f(bj) = ai).

Qs: For all x, y, z ∈ F̂s,
fs(x) + fs(y) = fs(z) if and only if fs+1(x) + fs+1(y) = fs+1(z),
fs(x) · fs(y) = fs(z) if and only if fs+1(x) · fs+1(y) = fs+1(z), and
fs(x) < fs(y) if and only if fs+1(x) < fs+1(y).

De: ϕe 6= f−1.

Satisfying the Pi and Ri requirements ensures that f is a well defined bijection
(our construction makes each fs an injection). We define addition, multiplication,

and the order relation on F̂ by x+ y = f−1(f(x) + f(y)), x · y = f−1(f(x) · f(y)),
and x < y if and only if f(x) < f(y). Thus f will in fact be an isomorphism.

Satisfying Qs for each s ensures that addition, multiplication, and the order

relation are computable: to decide whether x < y, wait until x and y are in F̂s,
then ask whether fs(x) < fs(y). This can be answered, since F is a computable
ordered field, and we know

x < y ⇐⇒ f(x) < f(y)⇐⇒ fs(x) < fs(y).

Similarly, to find x+y or x·y, we just wait until x and y are in F̂s. Our construction
puts fs(x) + fs(y) and fs(x) · fs(y) in the range of fs+1, so we have

x+ y = z ⇐⇒ f(x) + f(y) = f(z)⇐⇒ fs+1(x) + fs+1(y) = fs+1(z)

x · y = z ⇐⇒ f(x) · f(y) = f(z)⇐⇒ fs+1(x) · fs+1(y) = fs+1(z).

But we can compute fs+1(x)+fs+1(y) and fs+1(x)·fs+1(y) since F is a computable

field, and then search through F̂s+1 until we find the element z for which fs+1(z)
is the correct sum or product.

Satisfying De for each e guarantees F̂ is not computably isomorphic to F . This

works because F and F̂ are archimedean, so any isomorphism between them is
unique. But f will be that isomorphism, so making ϕe 6= f−1 for any e says that
f−1 (and as such f) is not computable.

So meeting all requirements will give us the desired result. Now on to the

construction. It will be useful to label each element of F̂ with a quotient of rational
polynomials in some finite number of variables x0, x1, . . . , xn. We do this in such a
way that if pi(x̄) is the label for bi, then f(bi) = pi(ā) where ā = 〈ai0 , ai1 , . . . , ain〉.
Since F is a purely transcendental extension of Q, such a labeling is possible. As
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the construction proceeds, fs will need to be redefined on some elements, and in
doing so, we will change the label of those elements. The labels tell us how to safely
redefine fs.

Construction: Initially, let F0 = {b0, b1, b2} and define f0 so that f0(b0) = 0F ,
f0(b1) = 1F and f0(b2) = ai0 . Give b0, b1, and b2 labels 0, 1 and x0 respectively.
For each stage s, first try to meet a requirement De:

(1) Check if there is some e ≤ s for which ϕe,s(aie)↓= bj and fs(bj) = aie . If

there is no such e, let fs+1(bi) = fs(bi) for all bi ∈ F̂s and go to step 5. If
there is such an e, pick the least one and continue to step 2:

(2) Search for and find a rational c not already in the range of fs close enough
to aie in the sense of Lemma 4.4. (More precisely, take A and B in the
lemma to be the range of fs and the elements of the pure transcendence
basis for F already in the range, respectively. The lemma guarantees that
such a c can be found.) Define fs+1(bj) = c and relabel bj with simply c.

(3) For each bk ∈ F̂s with label pk(x̄), define fs+1(bk) = pk(ā′), where

ā′ = 〈ai0 , . . . , aie−1
, c, aie+1

, . . . , ain〉.
Relabel bk with p′k(x̄), where p′k is the result of replacing every occurrence
of xe in pk(x̄) with c (so p′k(ā) = pk(ā′)).

(4) For each bk ∈ F̂s such that fs(bk) 6= fs+1(bk), take k′ least such that bk′ is
not already in the domain of fs+1 and define fs+1(bk′) = fs(bk). Label bk′

with pk(x̄) (the old label of bk.)

Next, define a little more of f :

(5) For each bi, bj ∈ F̂s, if any of fs+1(bi) + fs+1(bj), fs+1(bi) · fs+1(bj),
−fs+1(bi), or fs+1(bi)

−1 are not already in the range of fs+1, define fs+1

on bk to be that element, where k is least such that bk is not already in
the domain of fs. Label bk accordingly (i.e., if we defined fs+1(bk) to be
fs+1(bi) + fs+1(bj), then label bk with pi(x̄) + pj(x̄), and similarly for the
other cases).

(6) For the least k such that bk is not already in the domain of fs+1, set
fs+1(bk) = ais+1

. Label bk with xs+1.

(7) Let F̂s+1 be the domain of fs+1.

This completes the construction.

Verification: We verify that each requirement is met. The construction actively
worked to satisfy the De requirements. For each e such that ϕe(aie) ↓, either
ϕe(aie) 6= f−1s (aie), in which case De is satisfied, or else we immediately act to
satisfy De by defining fs+1 so that fs+1(f−1s (aie)) 6= aie . The only stage s for
which f−1s+1(aie) 6= f−1s (aie) is one for which we act to meet De, so if we ever act to
meet De, we will succeed and De will be satisfied thenceforth.

To see that each Pi is satisfied, consider for which s it happens that fs(bk) 6=
fs+1(bk). The only time in the construction when we redefine f is when acting to
meet De for some e. We define fs+1(bk) in terms of the label for bk, but replacing
the variable xe with a rational c. If the label for bk does not contain xe, then we
have fs+1(bk) = fs(bk). Otherwise fs+1(bk) 6= fs(bk), but we will only have this
situation once for each xe, since we only act to meet De once. Since the label for
bk contains only finitely many variables, we will have fs+1(bk) 6= fs(bk) for only
finitely many s. Thus Pi is satisfied for all i.
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Similarly, each requirement Ri is met. By the construction, for every ai ∈ F ,
there is some stage s at which ai is in the range of fs. This is because we put
all rationals into the range, and all elements of the pure transcendence basis into
the range, and then close under the field operations. We must check though that
lims f

−1
s (ai) exists for each ai ∈ F . The only time f−1s (ai) 6= f−1s+1(ai) is when we

change f in acting to meet De for some e. If f−1s (ai) changes, then it must have
been that the label for f−1s (ai) contains xe. Since we need only act to meet De at
most once for each e, and since there are only finitely many e for which xe occurs
in the label for f−1s (ai), we see that there are only finitely many stages s for which
f−1s (ai) 6= f−1s+1(ai). Thus Ri is satisfied for all i.

Finally, consider requirement Qs. Fix x, y, z ∈ F̂s. Let px(x̄), py(x̄), and pz(x̄)
be their labels, respectively, at stage s. Now px(ā) + py(ā) = pz(ā) if and only
if px(ā′) + py(ā′) = pz(ā

′) (since we are simply substituting a rational in for the
variable xe in each term). But by the construction and how we defined our labeling,
we have that fs(x) = px(ā), fs(y) = py(ā), and fs(z) = py(ā). Also, since for
any k, pk(ā′) = p′k(ā), we have that fs+1(x) = px(ā′), fs+1(y) = py(ā′), and
fs+1(z) = pz(ā

′). Thus

fs(x) + fs(y) = fs(z)⇐⇒ px(ā) + py(ā) = pz(ā)⇐⇒
⇐⇒ px(ā′) + py(ā′) = pz(ā

′)⇐⇒ fs+1(x) + fs+1(y) = fs+1(z).

Similarly

fs(x) · fs(y) = fs(z)⇐⇒ fs+1(x) · fs+1(y) = fs+1(z).

That fs(x) < fs(y) if and only if fs+1(x) < fs+1(y) follows from Lemma 4.4: we
picked c close enough to aie precisely so that this would hold. This completes the
verification, and the proof. �

The fields we started with above had computable transcendence basis. However,
since copies of the field need not be computably isomorphic, we have no guarantee
the copies will have a computable transcendence basis. In fact, with a slight mod-
ification to the above proof, it is possible to create a copy of the starting field in

which no transcendence basis is computable: as you build F̂ , make sure that any
algebraically independent set computes the halting problem. Alternatively, it is be

possible to ensure that any infinite c.e. set in F̂ would necessarily be algebraically
dependent, so no transcendence basis can even contain an infinite c.e. set. We state
these two results as a corollary and leave the details of the proofs to the reader:

Corollary 4.5. There are computable fields for which every transcendence basis
computes the halting problem. There are computable fields for which every tran-
scendence basis is immune.

It would be desirable to extend theorem 4.2 to ordered fields which are not purely
transcendental. This is problematic however. The concern is that if we take an
algebraic extension over a purely transcendental field which adds algebraic relations
between transcendental elements, then we might be able to define the elements of
the pure transcendence basis. For example, it might be that the transcendental
element a is the only (or least) element x of the field for which 1 − x5 has a fifth
root. The above proof would fail because we would be unable to pick a rational c

to set fs+1(c) = fs(a), if the relevant relations were already present in F̂s.
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As it turns out, it is possible to algebraically identify the elements of a transcen-
dence basis in specific algebraic extensions. Thus, we can show:

Theorem 4.6. There is an archimedean field with infinite transcendence degree
which is computably categorical.

We will not give a proof, as this follows almost immediately from work in [18].
Instead we will briefly discuss the general idea. In their paper, Miller and Schoutens
use techniques from algebraic geometry to build a (non-ordered) field of infinite
transcendence degree which is computably categorical. They start with Q(xi)i∈N
and then adjoin elements yi such that (xi, yi) is a solution to the polynomial Xqi +
Y qi = 1, where qi is one of a specific sequence of odd primes they find. By Fermat’s
Last Theorem, there are no non-trivial solutions to these polynomials in Q, and
what Miller and Schoutens add is that there are in fact exactly six non-trivial
solutions to the polynomials in the field they build.

All that we must contribute is that it is possible to build an ordered field in
the same way. We start with any computable purely transcendental ordered field
with infinite transcendence degree and a computable pure transcendence basis:

Q(xi)i∈N. Then let yi = (1− xqii )
1/qi , using formal power series to approximate the

order relations if needed. To see that the field is computably categorical, note that
all we must do is first find the image of the transcendence basis {xi | i ∈ N}, and
then extend the isomorphism to the rest of the field as in Theorem 3.3. To find the

image of the transcendence basis, say f(xi), we search through F and F̂ to find
all six solutions to the Fermat curve Xqi + Y qi = 1. One of these solutions in F
will be (xi, yi). We use the order relation to determine how many of the five other
solutions in F have first component less than xi. We then know that (f(xi), f(yi))

must be that solution in F̂ for which there are the same number of solutions in F̂
with first component less than f(xi). Thus we can determine the isomorphism for
the transcendence basis, and then extend it to the entire field.

Note this construction can be used to create both archimedean and non-archimedean
ordered fields with infinite transcendence degree but finite computable dimension.

5. Archimedean Fields

We have seen that computable ordered fields with finite transcendence degree
have computable dimension 1, while at least some computable ordered fields with
infinite transcendence degree have computable dimension ω. But are these the
only possibilities or are there any computable ordered fields with finite computable
dimension greater than 1? We answer this question for archimedean fields.

Theorem 5.1. Let F be a computable archimedean field. Then F is ∆0
2 categorical.

Proof. Let f : F → F̂ be the unique isomorphism from F to F̂ . Since F is
archimedean, every element of F is uniquely determined by the set of rationals
below it. Since f is an isomorphism, for any x ∈ F and rational a, we have
f(a) < f(x) if and only if a < x. However, for every rational a, we can computably

determine f(a). Thus given x ∈ F and y ∈ F̂ , we can computably determine the
truth of a < x↔ f(a) < y, for any rational a. We have

f(x) = y ⇐⇒ ∀a(a ∈ Q→ (a < x↔ f(a) < y))⇐⇒
⇐⇒ ∀a(a /∈ Q ∨ (a < x↔ f(a) < y)).
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Since a /∈ Q is Π0
1, we see that f(x) = y is Π0

1, so certainly ∆0
2. �

Corollary 5.2. If F is a computable archimedean field, then the computable di-
mension of F is either 1 or ω.

Proof. Let F be a computable archimedean field. If every computable copy of F is
computably isomorphic to F , then F has computable dimension 1. If not, then there

is a computable ordered field F̂ which is classically but not computably isomorphic

to F . By Theorem 5.1, the unique isomorphism from F to F̂ is ∆0
2. Thus there are

two copies of F , namely F and F̂ , which are ∆0
2 isomorphic but not computably

isomorphic, so by Goncharov’s Theorem (4.3), the computable dimension of F is
ω. �

Note that by Theorem 4.6, the split between computable dimension 1 and ω is not
given by the split between finite transcendence degree and infinite transcendence
degree, as one might expect. Where exactly the split occurs is an open question.

6. Questions

It is unknown whether there is a (nice) algebraic criterion on computable ordered
fields which determines the computable dimension. Ordered fields with finite tran-
scendence degree must be computably categorical, so here ordered fields are easier
to analyze than fields in general. It appears though that the infinite transcendence
degree case is no easier for ordered fields than non-ordered fields. However, whether
the algebraic criterion (whatever it might be) would be identical in the ordered and
non-ordered cases is open.

The example given in [17] of a field with finite transcendence degree which is
not computably categorical is a non-real field. Therefore we ask whether there is
a formally real field (without an order specified) with finite transcendence degree
which is not computably categorical.

Although archimedean fields must have computable dimension either 1 or ω, the
same is not known for ordered fields in general. Indeed, for non-ordered fields, re-
cent work of Miller, Park, Poonen, Schoutens, and Shlapentokh suggests that there
are fields with each finite computable dimension. It is possible to build a non-
archimedean ordered field with infinite transcendence degree which is computably
categorical (as in Theorem 4.6). However, attempting a construction as we used in
Theorem 4.2 to show a non-archimedean field has computable dimension ω yields
problems beyond the possibility of transcendental elements being algebraically iden-

tifiable. Even if the isomorphism built between F and F̂ is not computable, there
may be another isomorphism which is – unlike in the archimedean case, there will
be many isomorphisms between the fields.

In Theorem 4.2 we required that the field possess a (copy with a) computable pure
transcendence basis. It would be nice to eliminate this non-algebraic restriction.
It is unclear whether or not this can be done. The proof still goes through if
the pure transcendence basis is Π0

1, however while all computable ordered fields
contain a Π0

1 transcendence basis, it is not clear that the same can be concluded
for pure transcendence basis. This leads us to a question about the complexity
of transcendence bases: are there computable purely transcendental ordered fields
in which every pure transcendence basis in every computable copy has complexity
greater than Π0

1?
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