Non-Computability in Graphs

Oscar Levin

University of Northern Colorado

UW Colloquium
October 24, 2013
Computability Theory

- Interested in the nature of computable functions
- Alternatively: recursive functions, lambda calculus, Turing machines, algorithms, etc.
- The meat: how can we talk about non-computable functions?
- Connection to logic: the more non-computable a function is, the more quantifiers we need to define it.
Interested in the nature of computable functions

Alternatively: recursive functions, lambda calculus, Turing machines, algorithms, etc.

The meat: how can we talk about non-computable functions?

Connection to logic: the more non-computable a function is, the more quantifiers we need to define it.
Interested in the nature of computable functions

Alternatively: recursive functions, lambda calculus, Turing machines, algorithms, etc.

The meat: how can we talk about non-computable functions?

Connection to logic: the more non-computable a function is, the more quantifiers we need to define it.
Computability Theory

- Interested in the nature of computable functions
- Alternatively: recursive functions, lambda calculus, Turing machines, algorithms, etc.
- The meat: how can we talk about non-computable functions?
- Connection to logic: the more non-computable a function is, the more quantifiers we need to define it.
Gain insight into computability theory using graphs as a canvas. Example: computable dimension.

Gain insight into graph theory using computability as a tool. Example: the Four Color Theorem.
Gain insight into computability theory using graphs as a canvas. Example: computable dimension.

Gain insight into graph theory using computability as a tool. Example: the Four Color Theorem.
Given two computable copies \mathcal{A}, \mathcal{B} of the same structure, there might or might not be a computable isomorphism between \mathcal{A} and \mathcal{B}.

The number of copies of a structure up to computable isomorphism is the computable dimension of the structure.
Given two computable copies A, B of the same structure, there might or might not be a *computable* isomorphism between A and B.

The number of copies of a structure up to computable isomorphism is the *computable dimension* of the structure.
1 or ω

A graph with computable dimension 1:

A graph with computable dimension ω:

Question: Are there structures which have finite computable dimension greater than 1?
A graph with computable dimension 1:

A graph with computable dimension ω:

Question: Are there structures which have finite computable dimension greater than 1?
1 or ω

A graph with computable dimension 1:

A graph with computable dimension ω:

Question: Are there structures which have finite computable dimension greater than 1?
Computable chromatic number

Any planar graph has a 4-coloring

There are computable planar graphs with no computable k-coloring for any k.
Any planar graph has a 4-coloring.

There are computable planar graphs with no computable k-coloring for any k.
Computable chromatic number

Any planar graph has a 4-coloring

There are computable planar graphs with no computable k-coloring for any k.
Given a graph, we look for sets of vertices close to everything.

A set is dominating if every vertex of G is in, or adjacent to a vertex in, the set.
Given a graph, we look for sets of vertices close to everything.

A set is dominating if every vertex of G is in, or adjacent to a vertex in, the set.
Given a graph, we look for sets of vertices close to everything.

A set is dominating if every vertex of G is in, or adjacent to a vertex in, the set.
Domatic Partitions

Definition

A **domatic** k-partition of a graph G is a partition of (all) the vertices of G into k (disjoint) dominating sets.

The **domatic number** $d(G)$ is the size of a largest domatic partition.
Definition

A domatic k-partition of a graph G is a partition of (all) the vertices of G into k (disjoint) dominating sets.

The domatic number $d(G)$ is the size of a largest domatic partition.
Definition

A domatic k-partition of a graph G is a partition of (all) the vertices of G into k (disjoint) dominating sets.

The domatic number $d(G)$ is the size of a largest domatic partition.
Domatic Partitions

Definition

A domatic k-partition of a graph G is a partition of (all) the vertices of G into k (disjoint) dominating sets.

The domatic number $d(G)$ is the size of a largest domatic partition.
Definition

A **domatic** \(k \)-partition of a graph \(G \) is a partition of (all) the vertices of \(G \) into \(k \) (disjoint) dominating sets.

The **domatic number** \(d(G) \) is the size of a largest domatic partition.
Main Question

Question

Given a computable graph G with domatic number n, what is the size of the largest computable domatic partition of G? In other words, what is $d^c(G)$, the computable domatic number?
If $d(G) = 2$ then $d^c(G) = 2$.

Suppose G has a domatic 2-partition (so no isolated vertices). There is an algorithm which produces a domatic 2-partition.

Vertices: \{v_0, v_1, v_2, \ldots\}

Put $v_0 \in A$.

Put $v_n \in B$ iff there is an adjacent vertex $v_k \in A$ (with $k < n$)

A is a dominating set: if $v_n \not\in A$ then \ldots

B is a dominating set: if $v_n \not\in B$ then \ldots
If \(d(G) = 2 \) then \(d^c(G) = 2 \).

Suppose \(G \) has a domatic 2-partition (so no isolated vertices). There is an algorithm which produces a domatic 2-partition.

Vertices: \(\{v_0, v_1, v_2, \ldots\} \)

Put \(v_0 \in A \).

Put \(v_n \in B \) iff there is an adjacent vertex \(v_k \in A \) (with \(k < n \))

\(A \) is a dominating set: if \(v_n \not\in A \) then \(\ldots \)

\(B \) is a dominating set: if \(v_n \not\in B \) then \(\ldots \)
If $d(G) = 2$ then $d^c(G) = 2$.

Suppose G has a domatic 2-partition (so no isolated vertices). There is an algorithm which produces a domatic 2-partition.

Vertices: \(\{v_0, v_1, v_2, \ldots \} \)

Put $v_0 \in A$.

Put $v_n \in B$ iff there is an adjacent vertex $v_k \in A$ (with $k < n$)

A is a dominating set: if $v_n \not\in A$ then …

B is a dominating set: if $v_n \not\in B$ then …
If \(d(G) = 2 \) then \(d^c(G) = 2 \).

Suppose \(G \) has a domatic 2-partition (so no isolated vertices). There is an algorithm which produces a domatic 2-partition.

Vertices: \(\{v_0, v_1, v_2, \ldots \} \)

Put \(v_0 \in A \).

Put \(v_n \in B \) iff there is an adjacent vertex \(v_k \in A \) (with \(k < n \))

\(A \) is a dominating set: if \(v_n \not\in A \) then \(\ldots \)

\(B \) is a dominating set: if \(v_n \not\in B \) then \(\ldots \)
If $d(G) = 2$ then $d^c(G) = 2$.

Suppose G has a domatic 2-partition (so no isolated vertices). There is an algorithm which produces a domatic 2-partition.

Vertices: $\{v_0, v_1, v_2, \ldots\}$

Put $v_0 \in A$.

Put $v_n \in B$ iff there is an adjacent vertex $v_k \in A$ (with $k < n$)

A is a dominating set: if $v_n \not\in A$ then …

B is a dominating set: if $v_n \not\in B$ then …
If $d(G) = 2$ then $d^c(G) = 2$.

Suppose G has a domatic 2-partition (so no isolated vertices). There is an algorithm which produces a domatic 2-partition.

Vertices: \(\{v_0, v_1, v_2, \ldots \} \)

Put $v_0 \in A$.

Put $v_n \in B$ iff there is an adjacent vertex $v_k \in A$ (with $k < n$)

A is a dominating set: if $v_n \not\in A$ then . . .

B is a dominating set: if $v_n \not\in B$ then . . .
If $d(G) = 2$ then $d^c(G) = 2$.

Suppose G has a domatic 2-partition (so no isolated vertices). There is an algorithm which produces a domatic 2-partition.

Vertices: $\{v_0, v_1, v_2, \ldots\}$

Put $v_0 \in A$.

Put $v_n \in B$ iff there is an adjacent vertex $v_k \in A$ (with $k < n$)

A is a dominating set: if $v_n \notin A$ then . . .

B is a dominating set: if $v_n \notin B$ then . . .
What if $d(G) = 3$?

Proposition

There is a computable graph with domatic number 3 but computable domatic number 2.

To prove this, we diagonalize against all computable functions.
What if $d(G) = 3$?

Proposition

There is a computable graph with domatic number 3 but computable domatic number 2.

To prove this, we diagonalize against all computable functions.
There is an effective list of all (partial) computable functions:

\[\varphi_0, \varphi_1, \varphi_2, \ldots \]

These can be simulated by a universal computable function.

We can run these programs “simultaneously” to see if any look like they compute a domatic 3-partition.

Meanwhile, we build a computable graph with a 3-partition.

When some \(\varphi_e \) tries to compute a 3-partition, we thwart it.
There is an effective list of all (partial) computable functions:

\[\varphi_0, \varphi_1, \varphi_2, \ldots \]

These can be simulated by a universal computable function

We can run these programs “simultaneously” to see if any look like they compute a domatic 3-partition.

Meanwhile, we build a computable graph with a 3-partition

When some \(\varphi_e \) tries to compute a 3-partition, we thwart it.
There is an effective list of all (partial) computable functions:

\[\varphi_0, \varphi_1, \varphi_2, \ldots \]

These can be simulated by a universal computable function.

We can run these programs “simultaneously” to see if any look like they compute a domatic 3-partition.

Meanwhile, we build a computable graph with a 3-partition.

When some \(\varphi_e \) tries to compute a 3-partition, we thwart it.
There is an effective list of all (partial) computable functions:

\[\varphi_0, \varphi_1, \varphi_2, \ldots \]

These can be simulated by a universal computable function.

We can run these programs “simultaneously” to see if any look like they compute a domatic 3-partition.

Meanwhile, we build a computable graph with a 3-partition.

When some \(\varphi_e \) tries to compute a 3-partition, we thwart it.
There is an effective list of all (partial) computable functions:

\[\varphi_0, \varphi_1, \varphi_2, \ldots \]

These can be simulated by a universal computable function.

We can run these programs “simultaneously” to see if any look like they compute a domatic 3-partition.

Meanwhile, we build a computable graph with a 3-partition.

When some \(\varphi_e \) tries to compute a 3-partition, we thwart it.
The Construction

G will start with copies of K_4, one for each φ_e.

Build G in stages. At each stage, build a new K_4 and check whether φ_e has halted on its copy of K_4.

If φ_e looks like it computes a 3-partition on its K_4, spring the trap!
The Construction

G will start with copies of K_4, one for each φ_e.

Build G in stages. At each stage, build a new K_4 and check whether φ_e has halted on its copy of K_4.

If φ_e looks like it computes a 3-partition on its K_4, spring the trap!
The Construction

\(G \) will start with copies of \(K_4 \), one for each \(\varphi_e \).

Build \(G \) in stages. At each stage, build a new \(K_4 \) and check whether \(\varphi_e \) has halted on its copy of \(K_4 \).

If \(\varphi_e \) looks like it computes a 3-partition on its \(K_4 \), spring the trap!
The Trap

The sprung trap still has a 3-partition, but not the one ϕ claims.
The Trap

The sprung trap still has a 3-partition, but not the one ϕ claims.
The Trap

The sprung trap still has a 3-partition, but not the one \(\phi \) claims.
The sprung trap still has a 3-partition, but not the one φ_e claims.
The sprung trap still has a 3-partition, but not the one φ_e claims.
Proposition

For any \(n \), there is a computable graph with domatic number \(n \) but computable domatic number 2.

Use \(K_{3(n-2)+1} \) as the trap to diagonalize against all possible computable domatic 3-partitions.
Proposition

For any n, there is a computable graph with domatic number n but computable domatic number 2.

Use $K_{3(n-2)+1}$ as the trap to diagonalize against all possible computable domatic 3-partitions.
Why does φ_e partition its trap so soon?

Just because G is computable, doesn’t mean we can compute the degree of a given vertex!

But what if we could?
Stupid φ_e

Why does φ_e partition its trap so soon?

Just because G is computable, doesn’t mean we can compute the degree of a given vertex!

But what if we could?
Why does φ_e partition its trap so soon?

Just because G is computable, doesn’t mean we can compute the degree of a given vertex!

But what if we could?
Highly computable graphs

Definition

A graph is **highly computable** if it is computable and degree function is computable.

Does this extra information help φ_e compute a domatic partition?

Proposition

There is a highly computable graph with domatic number 3 but computable domatic number 2.
Highly computable graphs

Definition

A graph is **highly computable** if it is computable and degree function is computable.

Does this extra information help φ_e compute a domatic partition?

Proposition

There is a highly computable graph with domatic number 3 but computable domatic number 2.
The idea: remotely sprung traps

Wait for φ_e to partition some fixed vertices. Then act.

Our action cannot change the degree of any vertex in the graph.

φ_e might never partition its vertices, but we don’t know that at any finite stage.

We must be able to force φ_e’s partition to be wrong, by modifying the graph arbitrarily far away from φ_e’s vertices.
The idea: remotely sprung traps

Wait for φ_e to partition some fixed vertices. Then act.

Our action cannot change the degree of any vertex in the graph.

φ_e might never partition its vertices, but we don’t know that at any finite stage.

We must be able to force φ_e’s partition to be wrong, by modifying the graph arbitrarily far away from φ_e’s vertices.
The idea: remotely sprung traps

Wait for φ_e to partition some fixed vertices. Then act.

Our action cannot change the degree of any vertex in the graph.

φ_e might never partition its vertices, but we don’t know that at any finite stage.

We must be able to force φ_e’s partition to be wrong, by modifying the graph arbitrarily far away from φ_e’s vertices.
The idea: remotely sprung traps

Wait for φ_e to partition some fixed vertices. Then act.

Our action cannot change the degree of any vertex in the graph.

φ_e might never partition its vertices, but we don’t know that at any finite stage.

We must be able to force φ_e’s partition to be wrong, by modifying the graph arbitrarily far away from φ_e’s vertices.
Highly intricate trap

A path:

- - - - - - - - -

Every third vertex must be colored the same.
Springing the trap
If $d(G) = 4$ then...

Proposition

There is a highly computable graph with domatic number 4 but computable domatic number 3.
If $d(G) = 4$ then...

Proposition

There is a highly computable graph with domatic number 4 but computable domatic number 3.
Can we do better?

Is it easier to find smaller domatic partitions in highly computable graphs?

Conjecture

Any highly computable graph with domatic number n has computable domatic number at least $f(n)$.

Maybe $f(n) = n - 1$. Or $f(n) = (n + 1)/2$
Can we do better?

Is it easier to find smaller domatic partitions in highly computable graphs?

Conjecture

*Any highly computable graph with domatic number n has computable domatic number at least $f(n)$.***

Maybe $f(n) = n - 1$. Or $f(n) = (n + 1)/2$
Is it easier to find smaller domatic partitions in highly computable graphs?

Conjecture

Any highly computable graph with domatic number \(n \) has computable domatic number at least \(f(n) \).

Maybe \(f(n) = n - 1 \). Or \(f(n) = (n + 1)/2 \).
Thanks for listening
Partial results towards and away from the conjecture

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $k \geq 3$. For any non-computable c.e. set A, there is an A-computable graph $G = (V, E)$ such that G has a domatic k-partition, but no computable domatic 3-partition.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is a highly computable graph with domatic number n, but no computable splittable domatic $(n - 1)$-partition.</td>
</tr>
</tbody>
</table>
Partial results towards and away from the conjecture

Proposition

Let $k \geq 3$. For any non-computable c.e. set A, there is an A-computable graph $G = (V, E)$ such that G has a domatic k-partition, but no computable domatic 3-partition.

Proposition

There is a highly computable graph with domatic number n, but no computable splittable domatic $(n - 1)$-partition.