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Computability and Graphs

A graph is computable provided there is an algorithm giving the
edge relation.

V = N. Is there an edge between vertices 7 and 253?

Compare: what vertices are adjacent to vertex 7?
This might be a harder question.

If a computable graph has a computable neighborhood relation,
we say the graph is highly computable.
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Computable Chromatic Number

The computable chromatic number χc(G) is the smallest n for
which there is a computable proper vertex coloring using n
colors.

Theorem (Bean)

There is a computable planar graph G with χ(G) = 3 but
χc(G) =∞.

Theorem (Schmerl)

Every highly computable graph has χc(G) ≤ 2χ(G)− 1 (and this
bound is tight).

Knowing the neighborhood of vertices helps color a graph.
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Computable Sets

A subset of N is computable if there is some algorithm which
determines membership.

Algorithm means. . . C++ program. . . or Turing machine. The
algorithm is finite, but we have unlimited time and space.

{ϕe}e∈N is a complete, effective list of all algorithms.



Non-Computable Sets

Not all sets are computable.

Example

K = {e | ϕe(e)↓} is not computable.

K is not computable, but it is computably enumerable (c.e.):
there is an algorithm that lists all elements.
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Between Computable and K

K is Turing complete for the c.e. sets.

That is, if A is a c.e. set, then we can compute A using K.

A ≤T B means there is an oracle Turing machine Φe which
computes A using oracle B. So A = ΦB

e .

Post’s Problem: is there a non-computable c.e. set A <T K?
Yes.
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(A small part of) The Big Picture



A-computable Graphs

How hard is it to compute the neighborhood relation, NG?

No matter what NG ≤T K. If G is highly computable, NG ≤T ∅.

But there are sets between ∅ and K.

Definition (Gasarch and Lee)

A computable graph G is A-computable provided NG ≤T A.
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Chromatic Number for c.e. A

Theorem (Gasarch and Lee)

For any non-computable c.e. set A, there exists an
A-computable graph G with χ(G) = 3 but χc(G) =∞

In other words: having more (but not complete) information
about the neighborhood relation doesn’t help.

The theorem generalizes to many (every?) graph property with
different results for computable and highly computable graphs.
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What if A is not c.e.?

There are non-c.e. sets A between ∅ and K. What about them?

Theorem (JLM)

There exists a non-computable set A ≤T K such that every
A-computable graph with chromatic number 3 has finite
computable chromatic number.
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Proof Idea

Build A to be limit computable using a finite injury priority
construction.

Essentially: for each potential A-computable graph, attempt to
color (using the highly computable coloring algorithm). If
something goes wrong, either use (a few) extra colors or
change A to make the graph not A-computable.
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Using graphs to classify sets

A-computable graphs act like
computable graphs

A-computable graphs act like
highly computable graphs

A = K A = ∅

All non-computable c.e. sets
Some non-computable non-c.e.
sets

Some non-computable non-c.e.
sets

A is low for graph neighborhood:
every A-computable graph is
highly computable.
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Classification of sets low for graph neighborhood

Theorem (JLM)

Let A ≤T K be a non-computable set. The following are
equivalent.

1 A is low for graph neighborhood.

2 Every c.e. set B ≤T A is computable.

3 Every A-computable graph with finite chromatic number
has finite computable chromatic number.

4 Every A-computable graph with an Euler path has a
computable Euler path.
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