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Computable Graphs and Coloring

An infinite graph G = (V,E) is computable provided E is a
computable set.

Coloring connected graphs:

There is a computable 3-colorable graph with no
computable 3-coloring.
Every computable 2-colorable graph has a computable
2-coloring.
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Hypergraphs and coloring

Hypergraphs generalize graphs in that edges can contain more
than two vertices.

We consider infinite 3-uniform hypergraphs: each hyperedge
contains exactly three vertices.

A (weak) k-coloring of a hypergraph is an assignment of k
colors to vertices such that no hyperedge is monochromatic.
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Computable Hypergraphs and Coloring

A hypergraph is computable if the set of hyperedges is
computable. So there is an algorithm that correctly answers the
question:

are these three vertices a hyperedge?

Theorem

There exists a connected, computable 2-colorable hypergraph
with no computable 2-coloring.
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Construction

We build a computable hypergraph for which every potential
2-coloring is wrong.
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Increasing the computable chromatic number

There is a connected, computable 2-colorable hypergraphs with
no computable 4 coloring.
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Increasing the computable chromatic number

There is a connected, computable 2-colorable hypergraphs with
no computable 4 coloring.
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If we know more about the hypergraph . . .

A hypergraph is highly computable provided it is computable
and the degree function is computable.

This means that given a vertex, we can effectively get a list of
all hyperedges it belongs to.

Theorem

There is a connected, highly computable 2-colorable
hypergraph with no computable 2-coloring.
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The idea of a construction

2

1

1

1

1

2

1

212

212

211

121



Where is the complexity?

Consider not-necessarily connected graphs:

For 2-colorable graphs, you can compute a 2-coloring from the
relation that says whether a pair of vertices is in the same
component.

For 2-colorable hypergraphs, even with this relation, you cannot
compute a 2-coloring.

What should we color v207? We don’t know whether we have
freedom to decide for ourselves!
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The End

Thanks!
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