
How (Not) to Compute Domatic Partitions of
Graphs

Oscar Levin

University of Northern Colorado

Rocky Mountain Section of the MAA meeting
April 14, 2012



Dominating Sets in Graphs

Given a graph, we look for sets of vertices close to everything.

A set is dominating if every vertex of G is in, or adjacent to a
vertex in, the set.
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Given a graph, how hard is it to find a domatic partition?

Is there an algorithm which computes a domatic partition for all
graphs?

Including infinite graphs?

What does that even mean?
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Computable Graphs

Definition

A graph G is computable if the edge relation is computable.
That is, there is an algorithm which, when given vertices v1, v2,
decides E(v1, v2).

Question (restated)

Given a computable graph, is there a computable function ϕ(x)
which outputs which set in a domatic partition an input vertex
belongs to?

Is there a computable domatic partition?
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The Answer for 2-Partitions

Suppose G has a domatic 2-partition (so no isolated vertices).
There is an algorithm which produces a domatic 2-partition.

Vertices: {v0, v1, v2, . . .}

Put v0 ∈ A.

Put vn ∈ B iff there is an adjacent vertex vk ∈ A (with k < n)

A is a dominating set: if vn 6∈ A then . . .

B is a dominating set: if vn 6∈ B then . . .
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The Answer for 3-Partitions

Proposition

There is a computable graph with domatic number 3 with no
computable domatic 3-partition.

To proof this, we diagonalize against all computable functions.
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Some Ideas from Computability Theory

There is an effective list of all algorithms:

ϕ0, ϕ1, ϕ2, . . .

These can be simulated by a universal algorithm

We can run these programs “simultaneously” to see if any look
like they compute a domatic 3-partition.

Meanwhile, we build a computable graph with a 3-partition

When some ϕe tries to compute a 3-partition, we thwart it.
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The Construction

G will start with copies of K4, one for each ϕe.

Build G in stages. At each stage, build a new K4 and check
whether ϕe has halted on its copy of K4.

If ϕe looks like it computes a 3-partition on its K4, spring the
trap!
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The sprung trap still has a 3-partition, but not the one ϕe claims.
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Worse than that. . .

Proposition

For any k, there is a computable graph with domatic k-partition
but no computable 3-partition.

Even if we know the degrees of all vertices, we still can’t do it:

Proposition

There is a highly computable graph with domatic 3-partition but
no computable 3-partition.
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. . . bad as possible

There is no first order information about a graph which helps
compute domatic partitions.

Proposition

The question of whether a computable graph has a domatic
3-partition is Σ1

1-complete.

Basically this says that in order to determine whether a graph
has a domatic 3-partition, you must find one.
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The End

Thanks for listening
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