Git for Authors



Git for Authors

Robert A. Beezer
University of Puget Sound

David Farmer
American Institute of Mathematics

DRAFT January 29, 2024 DRAFT



©2016 Robert A. Beezer, David Farmer

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.



How to Read This Book

The essential concepts of git are treated in the first four chapters, they should
be read thoroughly and carefully, in order. Chapter 2, Chapter 3, and Chapter 4,
treat the cases, respectively, of one, several, and many collaborators, with very
different organizational models, but the concepts are universal to all three
models.

Eventually you will find more intricate topics in Chapter 5 and Chapter 6
necessary or useful, and maybe both. Chapter 7 explains ways to backup
and correct mistakes. Chapter 8 is a grabbag of short topics that do not fit
naturally in the early material and would have just been a distraction. At some
point familiarize yourself with what is on-offer there. The appendices contain
technical information that might change over time, in addition to reference
material.

iv



Contents

How to Read This Book
1 Introduction

2 All By Yourself

2.1 Commits .
2.2 Branches .
2.3 Commit Hashes

3 With a Few Friends

3.1 Collaborating across Time and Space.
3.2 Conlflicting Edits .

4 In Control

4.1 Creating a Pull Request
4.2 Reviewing and Accepting a Pull Requebt

5 Merge Conflicts
6 (*) Branch Management

7 (%) Oops!
7.1 That is So Messed Up .

8 Git Miscellany

8.1 (%) Word Diff . . .

8.2 (%) Impersonating a Commlter .

8.3 The Stash . .
8.4 (x) Tagging Releases Slgnlng a Reposfcory
8.5 () Who Did What, and When?

8.6 (*) Where Did it All Go Wrong?

8.7 (x) File Management

8.8 (*) Binary Files

iv

14

.14
. 20

23

.23
.27

32

34

35

. 35

36

. 36
. 36
. 36
.37
.37
.37
.37
. 38



CONTENTS

8.9 (x) Everything: The reflog
8.10 () README on GitHub .
8.11 (%) Log Display Options

9 Parting Shot
Appendices

A Getting Started with Git

A.1 Installing Command-Line Git
A.2 Configuring Git the First Time .
A.3 Initializing a Git Repository .
A.4 Tgnore Temporary Files.

B Getting Started with GitHub

B.1 Make An Account. Ce e
B.2 Creating a New Repository on GitHub .
B.3 Adding Collaborators to a GitHub Repository
B.4 Copying a GitHub Repository (Forks, Clones)

C Quick Reference
D Cheat sheet for contributing to a project
E Cheat sheet for managing pull requests

F List of Principles

Back Matter

Resources

vi

. 38
. 38
. 38

39

40

. 40
. 40
41
41

43

.43
.43
.44
.44

45

46

47

49

50



Chapter 1

Introduction

Git, henceforth git, is a revision control system. What’s that? It is a tool
to record changes to software, a tool to experiment with changes to software,
and a tool to collaborate creating software. Why might an author want to use
a tool designed to keep track of software? Presumably your writing is in an
electronic form, and you may want to keep track of your work, you may want to
experiment with different approaches to your writing, and you may collaborate
with others, not least perhaps a copyeditor and an editor.

git has a powerful feature, know as branching, which allows you to branch
off in two different directions with your writing. You can decide to tie the two
branches back together later, with a process known as a merge or you can
decide to keep one branch, and kill off the other. On a collaborative project,
two different collaborators can work on two unrelated personal branches of the
same project. These branches can be local to their own computers, with neither
collaborator aware of, or concerned about, the other’s work. If their work is
independent, then both collaborator’s additions may be merged into the project
separately, or if their work overlaps, git can be used to resolve the overlaps.

Example 1.0.1 Heroine versus Hero. Suppose you are well along on
writing the next Pulitzer Prize winning novel. But you cannot figure out how
you want it to end? In one scenario, the hero dies, and in another scenario the
heroine dies. You might choose to make two copies of your novel in different
directories and work on separate endings, eventually choosing one over the
other. But let us suppose that in the course of doing this work in two different
directories, you think of a great new way to develop your two characters in the
early chapters. So now you need to make the same edits to both copies? Or
maybe your novel is spread across several files, one per chapter, and you only
need to edit a few early files in one version and copy just those files over to the
other directory (hopefully not overwriting some other work there). This sounds
a bit tedious, maybe complicated, and likely error-prone.

Let us see how git would handle this. Originally you are working on the
main branch, almost always named master. Once ready to create two different
endings, you would split off from master along two branches, perhaps named
hero and heroine. You can now add material to each of the two different
branches, switching between them at will. When you get your idea to improve
the early character development, you can switch back to the master branch,
edit your early chapters in a way that is common to both of your endings, then
return to alternately working on your heroine and hero branches. You only
ever have one copy of your early work, and if you ever make overlapping changes
on your two branches, then there are procedures for managing those conflicts.



CHAPTER 1. INTRODUCTION 2

|

That example is a bit contrived, but basically realistic. And there is
necessarily some hand-waving in how git helps you. We will guide you carefully
through a similar application of git in Checkpoint 2.2.1.

To use git you need to author with source files that are simple text. So
that likely means using some markup language like IXTEX, MathBook XML,
Markdown, reStructured Text, or a similar language such as those supported
by pandoc. XML formats for Word files might work out acceptably, but will
be less than perfect. We are also going to show you how to use git at the
command-line in a terminal, so you might need to consult a tutorial on using a
command-line and file management. We have some quickstart information on
git itself in Appendix A.

git provides some powerful tools, and perhaps as a corollary, has a steep
learning curve. There is no right way to use git, and the way you choose to
employ it may in large part depend on social aspects of your project and its
organization. We will organize our initial material according to the number
of contributors and the organizational structure of the people in your project:
solo contributor (Chapter 2), a few collegial contributors (Chapter 3), or many
contributors with a central authority (Chapter 4). Read all of these chapters,
and read them in order, even if you know which model you might want to
eventually employ. The techniques, concepts and principles build on each other,
and there are no firm rules about numbers, procedures or organizational models.
It is even possible they will fluctuate over the lifetime of a project.

We will distill some of the essential concepts of git into a short series of
eight Principles, summarized in Appendix F. Review them often, until you
feel you understand them well, and it will be much easier to grasp the finer
details of git.

Principle 1.0.2 Git is a Tool. git is a tool that can be adapted to many
purposes and projects, in many different ways.

Discussions on the Internet about how best to use git can generate a lot of
heat, but not much light. Ignore them. Understand the basic principles of how
the tool functions, learn the commands that work for your projects, and employ
it to make your real work more productive, efficient and enjoyable. Simply
becoming a git expert is not the object.

You will find that git is like a garage door opener. Without one, you wonder
why you might ever need one, but once you start using one, you decide you
could not live without it. Or to extend the automotive motif, it is like a seat
belt—you feel unsafe without it. Enjoy getting to know git.



Chapter 2

All By Yourself

git is at its best when people collaborate, but it can still be valuable to an
individual, and you may gain collaborators or contributors in the later stages
of a project. We can understand some basic concepts by considering first the
simple situation of a single, solo contributor.

You will not fully appreciate all of our Principles on a first reading, but if
you come back to review them, they may be more useful on each reading. Here
is one such.

Principle 2.0.1 Git Manages Changes. git manages collections of changes
to your files. It does so in linear sequences of incremental changes that are
always consistent.

You may be very comfortable with organizing your writing as a collection
of files, perhaps further organized in a series of directories or folders, perhaps
even nested several levels deep. git works on, and manipulates, your files for
you, which can be disconcerting at some point. The objects that git stores
and tracks are collections of changes to your files. One such collection might
make several small changes to several different files (perhaps you renamed a
character throughout your novel), or the change may be to add a new file (an
entire new chapter, say). As you instruct git to move between branches, you
might see your character’s name change back and forth, or you might see your
new chapter entirely disappear, only to reappear later. The files in your project
are the cumulative result of many changes applied in sequence, not some final
state that never regresses to an earlier state. But don’t panic, git has all your
changes stored away safely.

git manages changes to your files, and those changes are accumu-
lated in files, whose state may change in ways you are not accustomed
to.

If that sounds scary, realize that RAB is self-taught when it comes to git
and has never lost any work. He has panicked. But he has gained valuable
experience puzzling his way out of some jams (see Chapter 7). And once he
ended up applying the same collection of changes twice, mysteriously getting
two of everything in a chapter (see Section 8.3).

2.1 Commits

Collections of changes can be called changesets, but we will be more likely to
call each such collection a commit. That is a noun, not a verb. If you have



CHAPTER 2. ALL BY YOURSELF 4

some experience with other revision control systems, then you might be familiar
with the notion of “committing”, or “checking in.” Try to avoid confusing the
new noun with your old verbs.

How do you make a commit? Roughly, you edit your files, so that your
directory of files (your working directory) is dirty. The dirty or clean
directory is a good mental image as you start working with git. Edit your
files, and save your files. Normally, you feel pretty secure at this point. You
have made changes, and by saving the edited files, you feel like you have saved
your changes. But from git’s perspective, your files are dirty and you have not
made your changes known to git yet. Here is the drill, using two commands at
the command line in a terminal.

List 2.1.1 Making a Commit

1. Edit some files and save them, making your working directory
dirty.

2. git add <filel> <file2> <file3>

3. git commit -m "Add the incident at the train station"

You will get no reaction (output) from the git add command, but when
you actually make the commit, you should get a response like

[master c@f19a2] Add the incident at the train station

OK, that is a basic recipe, but what actually happened? In the add command
you would have listed some, or all, of the files you had edited and saved. If you
only listed some, the commit would only contain some of your changes, and the
remaining changes would contribute to keeping your working directory dirty.
The add command moves your changes in the indicated files to a staging area,
a sort of purgatory, called the index. We say those changes are staged. You
can incrementally add changes to the index to form a coherent set of changes
that will eventually become a commit. For example, above you could have run
the add command three times, once for each file, to stage the same collection of
changes. If you further edit a file after git add, you can add that file again to
move the subsequent edits into the index.

Realize that git add does two similar things. If git is unaware of some file,
then add will make it one of the files that git tracks and will put the current
contents of that file into the index. And from now on, git will include relevant
details about this file in reports. For example if the file is dirty, then certain
reports will show the changes (see next paragraph). But “tracking” a file does
not mean git automatically packages up changes. That is your job. You have
control of exactly which changes git will manage, and when you want git to
become aware of those changes. Subsequently, git add moves changes from a
file into the index, and you can do this repeatedly to update which collection
of changes are staged in the index.

With all this talk of a dirty directory, how can you tell if your directory is
even dirty at all? The command is git diff. It takes no action and is merely
informative. You can run it anytime you like and it is wise to do it often,
especially when getting started. RAB often walks away from his writing with
a dirty directory (not best practice). So it is a good habit he has to always
run git diff when first returning to a project. The output of git diff is all
of the changes in your working directory that are not staged into the index.
It is organized by file (given in yellow on my computer), with red text being
removed and green text being added. White text is unchanged and provides



CHAPTER 2. ALL BY YOURSELF )

context for changed text, in order to help git apply changes in the right places.
Solid red squares or bars are extraneous whitespace that serves no purpose
other than to potentially confuse git. It is a good idea to become comfortable
understanding this information. When all your changes are in the index, your
working directory is now clean, and git diff reports nothing.

git diff drops you into a simple program known as a pager. The down
and up arrows work to scroll through the output, the spacebar advances by a
screenful, and the b key takes you back a screenful. Press h for help on more
commands, and use q to quit and exit.

As you add changes to the index, you can see what your future commit
looks like by running git diff -cached, which will report the accumulated
changes in the index, using the same format.

After all this add’ing and diff’ing, making the commit itself is straightfor-
ward. git commit will do the job—moving changes from the index into a single
collection of changes, a changeset, to be stored, managed and manipulated by
git. Technically, this is an irreversible action, but in practice there are many
ways to back-up and have a do-over, especially when you are solo. So don’t
panic.

The -m switch allows you to make a commit message on the command
line, which you should enclose in quotation marks (single or double, allowing
use of the other kind in your message, if needed). Without it, git will dump
you in your editor, a step we prefer to avoid. Either way, you will always want
to include a commit message. They can have multiple lines, but in practice we
like to keep them to one concise line, leading with a capitalized action verb,
and not more than about sixty characters. These messages will help you find
your way in your git repository, and they will be the first thing others see if
they peruse your repository. We think they are worth some thought toward
making them informative and helpful, rather than sloppy and uninformative.
You are an author, no? Treat your commit messages much like the entries that
form a Table of Contents.

COMMENT DATE
CREATED MAIN LOOP . TIMING CONTROL.
ENABLED CONFIG FILE PARSING
MISC BUGFIXES
CODE ADDITIONS/EDITS
MORE CODE
HERE HAVE CODE
APARARAA
ADKFJS{KDFISDKLFT
MY HANDS ARE TYPING WORDS
HARARAAAAANDS

AS A PROTECT DRAGS ON, MY GIT COMMIT'
MESSAGES GET LESS AND LESS INFORMATIVE.

Figure 2.1.2 xked “Git Commit”! (used with permission)

Unlike git add, the git commit command does acknowledge that something
happened. The message shown above has the name of the branch (master) and
the commit message. But what is c0f19a2? Every commit you ever create
gets a hexadecimal identifier that is probabilistically unique across all the
git repositories ever made and that will ever be made. And the first seven
characters are usually good enough to uniquely identify commits within your
repository.

Try the new command git log. It may not show much, but it will list

lxked.com/1296/


http://xkcd.com/1296/

CHAPTER 2. ALL BY YOURSELF 6

information on every commit on your current branch. And you will see some
huge commit hashes. There are 268 435456 different possibilities for seven
hexadecimal digits. A full 40-digit commit hash has about 10*® possibilities.
This is not a technical aside, we will see soon enough the critical role commit
hashes play in a git repository (see Section 2.3). Even though your commit
about the train station incident might often be shown shorthand as c@f19a2, it
may in reality be

c0f19a223404c394d592661532747527038754e

which you would see in the log.

Here are two more useful diagnostic commands. git status will tell you
which files are dirty, which files have changes staged in the index and destined for
the next commit, and which files are lurking about in your directory, but which
you have not ever told git about. This is a good command to run frequently,
especially when you are beginning. Finally git ls-files will output all the
files git has changes for. This one is interesting, but less useful day-to-day.

We will primarily teach by guiding you through exercises. They almost
always have extra information, so read them just for that. Experiment with
a scratch repository where you can try different things without the inevitable
mistakes also being worrisome disasters. And realize you can always start over.

Checkpoint 2.1.3 My First Repository.

1. Consult Appendix A for instructions, setup git, and init an empty
repository.

2. Make several commits, creating and adding at least three files into the
repository. Use git diff, git diff —cached, git status, and git log
liberally in the process.

Put some non-trivial content into each file (though it does not need to be
excessive). We will use this repository for future exercises, so do not get
rid of it. Put a typographical mistake into one of your three files.

3. Do not experiment with branches, we will do that next.

4. Once completed, use git show master to see the changes in your last
commit, in the diff format. Use git show master~1 to see the changes in
the commit just prior to that one. And git show master~2 for the one
before that. Try replacing the references (master~N) by the first seven or
eight digits of the commit hash, which you can get from the output of
git log, and see that this is the functional equivalent of using branch
names with relative references.

When you are done, the logical arrangement of your commits might look like
the following diagram. We list older commits at the bottom and do not include
commit messages. We use a 4-digit hash, which will uniquely identify each
commit. The name with the arrow points to the tip of the branch with that
name. The commit at the bottom, the first commit ever, is known as the root
commit. As your repository gains more branches, it will look more and more
like a tree than a twig. This diagram should be similar in spirit to what git
log reports for this simple first exercise.

Figure 2.1.4 Completed First Repository



CHAPTER 2. ALL BY YOURSELF 7

2.2 Branches

The term branch gets used many ways in git, as a verb and a noun, likely
because it is so fundamental. We will introduce you to this concept with an
exercise, that will also give you some idea of the power of the idea. So even if
you do not work the example right away, read through it, since it contains a lot
of explanation.

Checkpoint 2.2.1 Hero and Heroine on Branches. Make sure your
practice repository has at least three files in it, with one typographic mistake.
So go ahead and create a new file and a new commit if you need to. We will
wait.

We are going to pretend that we are writing a novel and we want to design
two possible endings. In one, the hero dies, and in the other, the heroine dies.

Make sure your working directory is clean and type git branch heroine.
Not much will appear to have just happened. So here is a new diagnostic
command you will want to use all the time. Type git show-branch. This shows
all of your possible branches, with an asterisk (“x”) indicating the branch you
are “on” and an exclamation mark indicating other branches (“!”). It is not
very informative yes, since your repository is just beginning to take shape and
you have only just created a branch. Be sure to keep this output visible in your
terminal for an upcoming comparison.

Now we are going to move to you new branch. Ready? Type git checkout
heroine. Now run git show-branch again and compare to the previous output.
The big change is that the asterisk has moved to indicate the heroine branch.
We say you are now on the heroine branch. If you have experience with other
revision control systems, the word “checkout” is fraught with other meanings
that are not accurate. Sorry, just get over it. In git the checkout command
will change the files in your working directory to some possibly different state,
based on a different sequence of changes in a sequence of commits constituting
a different branch. (Remember, commits are collections of changes.)

Choose one of your two files without a typo and edit it to include some
words about the heroine dying, and also remove some existing words at the
same time. Use git diff, git add, git commit to form a new commit that
is the changes you just made, and with a commit message about creating an
ending where the heroine dies. You should have a clean working directory after
the commit.

Now show-branch will show something interesting:

rob@lava:~/books/ppw$ git show-branch
* [heroine] Create an ending where the heroine dies
! [master] <message about last commit on master>

* [heroine] Create an ending where the heroine dies
*+ [master] <message about last commit on master>

The top half lists all your branches, with color-coding and identifying
symbols. The bottom half tries to describe to you how those branches relate.
We will make it even more interesting shortly.

Close any files you have open in your editor, type git checkout master,
and open the files again. Don’t panic. You have restored your working directory
to the state of all the accumulated changes up to the tip of the master branch,
so you do not see your most recent change to your novel. The changes that
constitute the brilliant ending about the death of the heroine is saved by git
in a place that it is hard for you to find but easy for you to manage. Would
you like your ending back? Close your files, type git checkout heroine, and



CHAPTER 2. ALL BY YOURSELF 8

open your files. git has manipulated your files and applied the changes with
the ending, so now your novel should contain the new ending.

Perhaps you now see why git can feel a bit foreign and why at some point
you will have that “Oh, &\#x!” feeling. Don’t panic. git manipulates the
state of the files in your working directory, so in a way those files are ethereal.
git stores your commits (collections of changes) safely and can rewind and
replay them in ways consistent with your writing while on various branches,
using your working directory as a sort of sandbox or laboratory.

Switch back and forth several times between the master and heroine
branches with git checkout. Close and open your files in your editor as
you let git manipulate your working directory. Run git show-branch liberally.
When you are ready, leave a file open when you know a checkout is going to
change it. How does your editor react? We don’t know, so can’t help. But
a good editor might say something like “File on disk changed, do you want
to reload it?” We use an editor that just silently reloads the file, unless there
are unsaved edits in it by mistake. If a git checkout results in a file not even
being present, our editor leaves it in a state we find very confusing. Sometimes
this sort of behavior can be configured in a editor. Experiment until this is not
confusing and in the meantime as you are learning, close and reopen files as
you instruct git to manipulate the state of your working directory.

Ready for another branch? Make sure you are on master (by running
git checkout master). Then make a new branch with git branch hero, and
switch to it with git checkout hero. Run git show-branch as you go, studying
carefully how the output is changing.

Open the file that is different from the one you edited before, and that is
not the one with the typo. Remove some words, and author an ending where
the hero dies. Create a commit with these changes, using a commit message
about the hero dying. (We might now use “commit” as a verb, and say commit
your changes.) Now show-branch will produce something like:

rob@lava:~/books/ppw$ git show-branch

* [hero] Made an ending where the hero is dead

! [heroine] Create an ending where the heroine dies
I [master] <message about last commit on master>

* [hero] Made an ending where the hero is dead
+ [heroine] Create an ending where the heroine dies
*++ [master] <message about last commit on master>

Now this is interesting. You have three branches, you are on the hero
branch, and the heroine and hero branches contain divergent storylines based
on a common beginning. (Everything up to master is common and not reported
in this output.) Experiment checking out different branches, run show-branch
liberally, and do not forget that you can do things like git show hero even if
you are not presently on the hero branch. Get comfortable with the current
state of your repository. Notice that each of our two new branches could each
be a sequence of many commits, but we just need one commit each for the
purposes of this exercise.

As you looked around, did you notice that typographical error you made in
the third file when you first start writing? (If not, play along.) Checkout the
master branch, open the file with the typo and and edit to correct the mistake.
Commit those changes. You should now see:



CHAPTER 2. ALL BY YOURSELF 9

rob@lava:~/books/ppw$ git show-branch

! [hero]l Made an ending where the hero is dead

! [heroine] Create an ending where the heroine dies
* [master] Correct a misspelling

* [master] Correct a misspelling
+ [hero] Made an ending where the hero is dead

+ [heroine] Create an ending where the heroine dies
++* [master*] <message about last commit on master>

Notice that the new commit has resulted in the tip of the master branch
moving to be the commit with the typo fix. Every commit we have made
so far has also moved the branch pointer to a new tip, but this is the first
time it was really interesting and significant. Notice that through all these
pointer movements we no longer have a pointer to the commit where all the
branches originated. Notice too that this report still shows the last of our
pre-exercise commits, since that is where our three branches diverged from
common material.

The good news is that we have two versions of our story and only fixed the
typo once, while the bad news is that the master branch has advanced and left
the hero and heroine branches behind. Do you see that in the output above?
As you checkout the three branches, you will see the effect of the three editing
sessions, but they are all disjoint. Said differently, switching to the hero branch
results in git manipulating your working directory by applying a sequence of
commits that do not contain the commit with the typo fix. And similarly for
the heroine branch. But not all is lost.

Here is where you begin to learn how to leverage git. We are going to
rewind the hero branch back to the commit where the branch began, and then
we are going to replay our changes at the new tip of the master branch. And
git knows just how far to rewind. (This would be slightly more interesting if
our hero branch had multiple commits beyond the old branch point.)

Ready? Make sure your files are closed, and checkout the hero branch, since
this is the branch we are changing. Run git log now and save the output some
place, because we want to see how the commit hashes behave. Now run git
rebase master. This tells git to rewind the current branch (hero), checkout
master, branch off master, and replay the commits that were just rewound (in
the opposite order), leaving the hero branch pointer at the tip of the branch.
Remember, git manipulates the files in your working directory by applying
(replaying) commits in sequence.

You might be aware that in replaying the commits, git might get confused
by intermediate changes that had not been present when the commits were
based on the original branch point. These situations are known as conflicts.
git can be pretty smart about these, but sometimes they require intervention
by the author. If you have followed our instructions and used three files, then
this will not happen in this exercise. We address conflicts in Chapter 3 and
Chapter 4.

Open your files and you should see the hero dying, and you should also see
the typo fixed. When I need to run this command, I say to myself “rebase the
current branch onto master” to make sure I get it right and do the right thing.
Examine the result with git show-branch.

Repeat this procedure to move the heroine branch up to the tip of master.
This is an exercise, so we will not hold your hand on this one. Think carefully
about each step while reviewing how we rebased the hero branch. When you
are done, you should see:



CHAPTER 2. ALL BY YOURSELF 10

rob@lava:~/books/ppw$ git show-branch

! [hero]l Made an ending where the hero is dead

* [heroine] Create an ending where the heroine dies
! [master] Correct a misspelling

+ [hero] Made an ending where the hero is dead
* [heroine] Create an ending where the heroine dies
+x+ [master] Correct a misspelling

Notice that all of the commits for the beginning of the story, prior to our
typo fix are not shown in this output because they are now common to all the
branches.

Before you experiment too much, checkout the hero branch, and as before-
hand, run git log. Compare with the output you save a few steps back. You
should see that the first commit (hero dies) now has a totally different commit
hash, the second commit is the typo fix (which was not evident beforehand),
and the present third commit is the previous second commit, with the identical
commit hash. We will discuss this outside of the exercise. Now, explore your
repository thoroughly with the various commands and diagnostics you have
learned.

That is it, we are done. Notice that you are maintaining two versions of
your novel, can easily switch between working on one or the other, and you can
edit common material just once in a way that is reflected in each version. If
you made a mess of this (which might be a good thing), just start over with a
new repository and have a do-over. Or maybe repeat the exercise with extra
commits on each branch for a fuller experience and to solidify your new skills.

The previous exercise begs the question: what to do once we decide which
ending we want? The next exercise has the answer.

Checkpoint 2.2.2 Heroine Meets Her End. Having thoroughly explored
the possibilities, we have decided to kill off the heroine as the ending of our
novel. Briefly, we are going to take all the changes from the heroine branch
and move them into the master branch permanently. Then we will deal with
the hero branch.

First, checkout the master branch since that is the branch we will be
changing. Then it is as simple as git merge heroine. Through this merge
you have taken the changes from the heroine branch and brought them into
the master branch. You should have output something like:

rob@lava:~/books/ppw$ git merge heroine

Updating 842f83c..c7fe82d

Fast-forward

some-file.txt | 4 ++--

1 file changed, 2 insertions(+), 2 deletions(-)

The file listed should be the one you edited with the story of the death of
the heroine. For more diagnostics:

rob@lava:~/books/ppw$ git show-branch

! [hero]l Made an ending where the hero is dead

! [heroine] Create an ending where the heroine dies
* [master] Create an ending where the heroine dies

+ [hero] Made an ending where the hero is dead

+x [heroine] Create an ending where the heroine dies

++x [hero*] Correct a misspelling

Now the heroine and master branches are identical, and the master pointer
has advanced one commit, so that the hero branch still splits off prematurely



CHAPTER 2. ALL BY YOURSELF 11

from master, but the heroine branch does not.

Running git log you will see that the second commit (the typo fix) was
reported by the merge as a short commit hash in the output (XXXX) and the first
commit (the heroine ending) is also reported by the merge via a short commit
hash (XXXX). This is the movement of the master branch pointer, indicated by
.. between the hashes.

This is actually a very special type of merge, known as a fast-forward
merge, as reported in the output. Since the heroine branch splits off from the
tip of the master branch, it is trivial to rewind all the heroine commits back
to master and then replay them onto master. Think about that for a minute.
Not only is it trivial, it borders on silly.

Here is what really happens in a fast-forward merge. No commits are
rewound and replayed. git simply moves the master branch pointer from its
original location, so that it points to the same commit as the one that heroine
points to. This has two implications. First, none of the commits on the heroine
branch change in any way. Second, once the merge is completed master and
heroine are redundant, as they point to the same commit, as you can see in
the top half of the output from show-branch where the commit message is
duplicated.

The previous paragraph is an important realization, but you might be wise
to forget about it. In the long run, it is better to think of this merge as
bringing (merging) the changes on heroine into master. That is the more
general situation, and we remember how the simpler version of describing a
fast-forward merge confused more general concepts later.

Now we have a bit of a mess on our hands. The heroine branch pointer is
redundant, but really it is obsolete. Our trial death of the heroine is no longer
experimental, we have decided that is the ending we want and now it is part of
master. Let us kill the heroine branch pointer too.

rob@lava:~/books/ppw$ git branch -d heroine
Deleted branch heroine (was c7fe82d)

Note in the output the short-version commit hash for the commit that is
the current tip of master, that is what heroine also pointed to. Most of your
work will initially reside on branches, so deleting a branch pointer sounds like a
dangerous thing to do, and it is. But git has your back. Try the following:

rob@lava:~/books/ppw$ git branch -d master
error: Cannot delete the branch 'master' which you are
currently on.

That is good. You would not want to delete the branch you were on, as
then you would be totally lost. So let us try cleaning up another part of our
mess. We still have the hero branch, with the ending we did not choose. Let
us delete that:

rob@lava:~/books/ppw$ git branch -d hero

error: The branch 'hero' is not fully merged.

If you are sure you want to delete it, run 'git branch -D
hero'.

When we deleted the branch pointer to heroine, git knew it was redundant
and happily deleted it at once with no questions asked. But the branch pointer
hero lets us reference commits we cannot locate any other way, specifically the
commit where we let the hero die. So git makes us be a bit more certain and
we need the upper-case variant of the switch to get rid of it. Be careful, because
if you lose track of commits, they can be hard to resurrect and eventually git
will garbage collect them when it does some automatic spring cleaning of your



CHAPTER 2. ALL BY YOURSELF 12

repository. For us, there is no real harm in leaving the hero branch in place,
and it is instructive to wait a while before killing it. It is doing no damage
where it is, we do not ever need to check it out, though eventually we will grow
tired of seeing it in all our diagnostic reports.

Realize that the decision above to merge heroine into master should not be
taken lightly, as it is quite difficult to reverse it, and not really in the spirit of
how you use git. Branches like hero and heroine are sometimes called topic
branches. Or in a nod to software development they may be called feature
branches, since they might be used to create and test a new feature for a
larger piece of software. I like to refer to a branch like master as the mainline.
An essential aspect of working with git is to always work on a branch, and
realize that there is little cost to making a branch, merging it, and then deleting
the (temporary) branch pointer. I have made branches that only had a lifetime
of five minutes. That is a principle.

Principle 2.2.3 Always Work on a Branch. Always make a topic branch
off your mainline when starting new work, and only merge once satisfied.

2.3 Commit Hashes

In computer science, a hash function is a many-to-one function that takes
lengthy input, massages it, and produces vastly shorter output of a fixed
length, called the hash. While the output looks random, the function has no
randomness, and the actual function is well-known to everyone. Identical inputs
will always produce the same output. But if two inputs differ even slightly,
they will have wildly different outputs—this is a design criteria for most hash
functions. Similarly, we might require that if we know the hash (output), it is
very hard to manufacture input to the hash function to produce that output.
For the hash function used in git it is highly unlikely that two different inputs
(commits) will produce the same output (hash). So the commit hash is similar
to how we use fingerprints or retinal scans to identify humans. If you want to
learn more, git uses the SHA-1 hash function, whose tamperproof properties
were designed for use in cryptographic applications. It is no longer considered
secure for that purpose, but works fine for use in git.

The input git uses to form the hash include things like your name, the
date, the commit message, the changes in the commit, and most importantly,
the commit hash of the previous commit in the sequence on the branch. This
is similar to the blockchain technology used in BitCoin, and lately a darling
of fintech (financial technology). A sequence of blocks of information and
their hashes, each formed with input including the previous hash, makes it
practically impossible to tamper with any one piece of information without
radically disturbing every subsequent hash.

Return to the fast-forward merge above to see that there was absolutely no
change in the information for each commit and there was no disruption in the
sequence (chain) of commits. As explained, the only thing that really happened
was that the master block pointer was changed to point to a new commit, the
tip of the heroine branch.

Contrast that to when we rebased the hero branch onto the master branch
that contained the typo fix. git rewound the commits on hero up to the old
branch point, but then replayed them onto a commit (the tip of master) with a
different commit hash. All of the replayed commits from the hero branch (we
just had one) will have their commit hashes recomputed and will be radically
different since the hash of the tip of master is an input to the first commit of
the rewound branch. The previous hash(es) are meaningless (and lost to time).



CHAPTER 2. ALL BY YOURSELF 13

Notice that git updates the branch pointer hero to use a new hash from the
tip of the replayed branch.

This is a principle that will be important once we get social and work with
others.

Principle 2.3.1 A Rebase Changes Hashes, a Merge Does Not. A
rebase will always change some commit hashes, while a merge will never change
any commit hashes.

You now know, and have experience with, four of the six important concepts of
working with git: committing, branching, rebasing and fast-forward merging.
Only (general) merging and pull requests remains. But first, let us get social and
begin collaborating with others, to realize some of the most powerful aspects of
git.



Chapter 3

With a Few Friends

One of the real benefits of git is the ability to collaborate easily with others in a
de-centralized manner across time and space. In this chapter we will experiment
with a model that is appropriate for a small group of collegial collaborators.
My dictionary (WordNet) defines “collegial” as “characterized by or having
authority vested equally among colleagues,” which is precisely the situation we
will simulate. So, in this chapter we will explore the scenario where a small
group of equals works on a writing project, on the assumption that everyone in
the group is trusted to make any sort of change at any time.

We will not be using email attachments or Google Docs to communicate.
Rather, an easy way to collaborate with git is to place a copy of the repository
on a server where each collaborator has the right privileges to interact with
the repository. If your project is secret and sensitive, this might be a server at
your workplace, or a web host you control and trust. Or maybe the project is
not so sensitive and a private account at GitHub is appropriate and easy to
set-up. Or maybe your project has an open license and an open repository will
eventually allow total strangers to contribute to your project (see Chapter 4).
For exercises in this chapter, we will use GitHub!, a (free) site that hosts git
repositories along with tools supporting collaboration around a git repository.

Principle 3.0.1 Merge into Your Current Branch. A merge integrates
changes into your current branch, from a branch you specify.

3.1 Collaborating across Time and Space

To get started, visit Appendix B, read the advice on making a GitHub account,
and make an account. Then come back here to work the following example.
To keep things simple, we will walk through an exercise with just two co-
authors, but you might imagine up to about five individuals participating in
the following.

Checkpoint 3.1.1 Alice and Bob Write Crypto. Alice and Bob are
two professional cryptographers who have discovered a weakness in a critical
algorithm underlying much of the world’s electronic banking programs. They
need to get the details out quickly as a research paper that they will host on the
arXiv! for the security community to vet. Alice and Bob have known each other
for years. They trust each others technical skills and writing style, and even
better, they both have GitHub accounts. In the best traditions of cryptography

lgithub.com/

14


https://github.com/
https://arxiv.org/

CHAPTER 3. WITH A FEW FRIENDS 15

research, they decide to write their paper openly as a public GitHub repository,
and they decide to host the repository in Alice’s account. Everything else will
be discussed on GitHub.

Work this exercise playing the role of Alice. If you have a friend who can
be Bob, all the better, but you can also play both sides of the collaboration
yourself and get almost as much out of the exercise (if Bob is somebody else,
then he need a GitHub account, but if you are playing both sides, then your one
GitHub account is enough.). Alice (you!) will log into her GitHub account and
initiate a new repository. Recall that in Chapter 2 we created a new repository
on our local computer at the command-line with git init. Now Alice will let
GitHub do that step since GitHub will automatically configure the repository
for subsequent communication.

See Section B.2 and Section B.3 for instructions on the steps in this para-
graph. Alice will create a new repository and name it banking-paper. She will
make Bob a collaborator on the repository since she knows Bob’s username on
GitHub from their previous collaborations. So there is now a fresh repository
on GitHub, which Alice and Bob can manipulate. We are going to call this the
definitive repository, as it will hold the “official” version of their paper. In
a minute we will setup Alice and Bob with local copies, but they have agreed
that those are just their local workspaces and the repository on GitHub always
holds the latest, and presumably best, version of their paper.

Section B.4 contains the necessary instructions for this paragraph, but are
more general, so read them and this paragraph through completely before
doing anything. In particular, ignore any discussion of “forks” until Chapter 4.
Alice should make a copy of the fresh repository onto her work computer,
and Bob should do the same. If you are playing both sides this exercise
yourself, copy the repository once, and then rename the banking-paper directory
to alice-banking. Then copy again and rename the resulting directory as
bob-banking. These changes have zero effect on how your repository behaves,
but you will need to mentally figure out which files you should be working with
in the remainder of the exercise.

In principle, Alice and Bob are totally setup and organized, and never even
need to visit the GitHub site ever again. But GitHub has some nice tools and
Alice and Bob have decided to be 100% transparent in their work. A GitHub
issue is like a topic on an online discussion forum. It is designed mostly for
reporting and discussing bugs in software, or requesting and implementing new
features in software. But they can also be used for planning and discussion.
Alice and Bob would like to plan their writing as an open discussion on GitHub,
deciding that Alice will concentrate on the introduction since she is the better
overall writer, and Bob will therefore get started on the section with the details
of the vulnerability. They will work more closely on the final section containing
recommendations.

So in our exercise, Alice should create a branch off of master named intro,
create a file intoduction. txt, add it to her branch, make some edits, commit
the changes, and so on. Bob should do similarly but make a branch off master
named vulnerable where he adds and edits a file vulnerability. txt as a series
of commits. Recall that Principle 2.2.3 says Alice and Bob should do all of
their work on branches.

Alice had the simpler task, so let us assume she finishes the introduction
first. She does not know she is first, she does not even have any idea where Bob
is in his writing. She has been doing her best to get the introduction right, and
to not disturb Bob, who is presumably also working hard. So Alice suspects
there are no new commits on the master branch, but does not really know. OK,
Alice is going to update master with a pull, see no new commits there, do a



CHAPTER 3. WITH A FEW FRIENDS 16

fast-forward merge of her intro branch into master locally, and then push her
master branch to GitHub. We will do the details carefully, but recognize that
the push and pull are the only new concepts we did not cover in Chapter 2.

But first, a bit of diagnostic work. Alice’s repository was copied from GitHub
and therefore is aware of its heritage.

alice@work:~/papers/banking-paper$ git remote -v
origin https://github.com/alice-jones/banking-paper.git
(fetch)

origin https://github.com/alice-jones/banking-paper.git (push)

Alice’s local version of the repository has a remote that carries the infor-
mation necessary to communicate with the definitive repository. Since Bob
made a similar copy he has an identical remote (remember the co-authors are
sharing a definitive repository in Alice’s account). The remote goes by the
name origin, which is customary, similar to the master branch. You can add
as many remotes as you like, putting your repository in contact with as many
different copies as you can think of.

alice@work:~/papers/banking-paper$ git checkout master
Switched to branch 'master'
Your branch is up-to-date with 'origin/master'.

Notice that git seems to know something about the state of your local
master in relation to the origin/master in the copy on GitHub. Let us check
anyway.

alice@work:~/papers/banking-paper$ git pull
Already up-to-date.

So Alice attempted to update her local master branch from the definitive
repository on GitHub, but there was nothing new to use as an update (her
master is up-to-date). As we suspected (or hoped!), Bob is still working on the
technical details locally. In case it was not obvious, we did not have to bother
Bob with an email asking where he was with his task. Now Alice is going to
merge her intro branch into master, which will be a fast-forward merge since
master has not evolved beyond her original branch point for intro.

alice@work:~/papers/banking-paper$ git merge intro
Fast-forward

introduction.txt | +++++++++++++

1 file changed, 25 insertions(+), @ deletions(-)
create mode 100644 introduction.txt

Alice has incorporated her introduction to the master branch, but now will
make it part of the definitive repository with a push. Note that Alice is still on
her master branch.

alice@work:~/papers/banking-paper$ git push

Username for 'https://github.com': alice-jones

Password for 'https://alice-jones@github.com': XXXXXXXXXX

Counting objects: 3, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 287 bytes | @ bytes/s, done.

Total 3 (delta ©), reused 0 (delta 0)

To https://github.com/alice-jones/banking-paper.git
80a9%eb3..laaedaf master -> master

Notice that Alice must sign in to GitHub, since only she and Bob are allowed

to modify the repository (the world can view it and copy it, not modify it).
So Alice has placed her introduction in the definitive repository without any



CHAPTER 3. WITH A FEW FRIENDS 17

additional coordination with Bob. Time is important, so Alice initiates an
issue on GitHub to discuss their recommendations, which will now interrupt
Bob, but they need to form a plan. However, without waiting for Bob’s reply,
Alice creates a new branch off master named last-chapter where she simply
adds an empty file named recommendations.txt. She repeats the steps above
and with a fast-forward merge, updates her local master and pushes it to the
definitive repository on GitHub. Alice can now clean up by deleting her intro
and last-chapter branch pointers that have become obsolete.

Now that Alice has communicated with a public repository, known to
the world, it is the right time to introduce a principle that we will illustrate
subsequently.

Principle 3.1.2 Never Alter a Public Commit. Never, ever, alter in any
way a commit that has been made available to anybody else.

We discussed the nature of commit hashes in Section 2.3. We have seen how a
local rebase changes commit hashes in Checkpoint 2.2.1. And we have a principle
about a rebase changing hashes, while a merge does not (Principle 2.3.1). Alice
can rebase her branch all she wants within her repository on her local computer,
but the instant she pushes commits to the definitive repository, they become
available to her co-author (Bob), and to the entire world. The commit hash
for each of these commits is a globally unique ID (GUID). There are ways
to modify these public commits in the definitive repository, but this would be
tantamount to chopping off somebody’s finger and replacing it with a new one
with a different fingerprint. Don’t do it!

Why not? All of git’s coordination is predicated on identical commits
having identical ID (the commit hash). In Chapter 4 we will expand our circle
of contributors to anybody in the world (don’t panic, we will have a procedure for
approving changes before they go into the definitive repository). Manipulating
a public commit will totally confuse git, make a big mess, and infuriate your
collaborators, whose copies of the repository are no longer consistent with
your ill-advised action. This may be the only advice that all the Internet git
commentators can agree on. If you follow the procedures we are describing, this
will never be a danger. But when you push a commit to the master branch of
the definitive repository and feel like you made a mistake, resist the temptation
to go backwards locally and then do a “forced push” to the definitive repository.
You might get away with it for a while, but eventually you will regret it. Just
live with it (a misspelled commit message), or add another commit to fix your
mistake (a grammatically poor sentence). And forget we even mentioned the
possibility of changing public commits.

Back to our exercise, now Bob has finished up his section, so he wants to
make it part of the definitive repository. He suspects Alice has finished the
introduction, since she was eager to discuss the recommendations. So, just like
Alice, he is going to update his master branch.

bob@laptop:~/publications/banking-paper$ git checkout master
Switched to branch 'master'
Your branch is up-to-date with 'origin/master'.

Notice that this particular up-to-date message is misleading. Bob will
really check with a pull. Remember that Bob has a remote named origin,
with connection information for the definitive repository. (Why doesn’t a pull
require a login?)



CHAPTER 3. WITH A FEW FRIENDS 18

bob@laptop:~/publications/banking-paper$ git pull
remote: Counting objects: 2, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 2 (delta @), reused 2 (delta 0), pack-reused 0
Unpacking objects: 100% (2/2), done.
From https://github.com/alice-jones/banking-paper
laaedaf..1912c1lb master -> origin/master
Updating 80a%eb3..1912cl1b
Fast-forward
introduction. txt |+ttt
recommendations.txt | @
2 files changed, 25 insertions(+), @ deletions(-)
create mode 100644 introduction.txt
create mode 100644 recommendations.txt

Bob just picked up Alice’s introduction section and empty recommendations
section from the definitive repository. That’s good. Do you see the subtlety?
Think carefully about it for a minute, this is a major concept. The branch
pointer master in Bob’s local repository just advanced two commits forward
from the branch point of the vulnerable branch he has been working on. Bob
sees:

bob@laptop:~/publications/banking-paper$ git show-branch
* [master] Empty chapter for recommendations
! [vulnerable] Vulnerability section

[master] Empty chapter for recommendations
[master*] Introduction

+ [vulnerable] Vulnerability section

*+ [master~2] Initial commit

Before Bob pushes his technical section, he will rebase his vulnerable branch
onto master. This would normally risk a merge conflict, but he knows Alice
has work only in introduction. txt, his new work is only in vulnerability. txt,
and recommendations. txt is empty. So Bob switches to vulnerable, rebases
onto master, switches to master, merges vulnerable into master (which is a
fast-forward merge, as expected), pushes master to origin/master, and cleans
up by deleting the obsolete vulnerable branch pointer.



CHAPTER 3. WITH A FEW FRIENDS 19

bob@laptop:~/publications/banking-paper$ git checkout vulnerable
Switched to branch 'vulnerable'
bob@laptop:~/publications/banking-paper$ git rebase master
First, rewinding head to replay your work on top of it...
Applying: Vulnerability section
bob@laptop:~/publications/banking-paper$ git checkout master
Switched to branch 'master'
Your branch is up-to-date with 'origin/master'.
bob@laptop:~/publications/banking-paper$ git merge vulnerable
Updating 1912clb..bceacaa

Fast-forward

vulnerability.txt | +++++++++++++

1 file changed, 90 insertions(+), @ deletions(-)

create mode 100644 vulnerability.txt
bob@laptop:~/publications/banking-paper$ git push

Username for 'https://github.com': bob-smith

Password for 'https://bob-smith@github.com': XXXXXXXXXXX
Counting objects: 2, done.

Delta compression using up to 8 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (2/2), 279 bytes | @ bytes/s, done.
Total 2 (delta 1), reused 0 (delta 0)
To https://github.com/alice-jones/banking-paper.git

1912clb..bceacaa master -> master

bob@laptop:~/publications/banking-paper$ git branch -d vulnerable
Deleted branch vulnerable (was bceacaa).

That looks complicated, but you will do it over and over if you collaborate
with this model. Update master from the definitive repository, rebase (advance)
your working branch to the tip of master, fast-forward merge your working
branch into your local master, then push your improved master to the definitive
repository. The clear and present danger here is to forget the first step, updating
your master. You may have little idea what has happened to the definitive
repository if you have had your head down working, so you need to always
remember to update before interacting with the definitive repository.

Where are we now? Alice and Bob both have the same introduction, and
they both have an empty section destined to hold recommendations. Bob has
pushed his technical section to the definitive repository, just now. However,
Alice does not yet have the technical section on the vulnerability. Notice that at
any time, Alice (or Bob) can make a commit on their present branch (so their
working directory is clean), checkout master, and pull origin/master from the
definitive repository. This will likely advance the branch pointer for master
but there is no harm in that at all. It is good, since now Alice’s local master
has the latest changes from the definitive repository and she can see how the
project is progressing.

Alice can return to her working branch, ezactly as it was after she switched
away from it. At any time, she can elect to rebase her working branch on a new
tip of the master branch. And it would be best practice to rebase frequently
and perhaps only encounter minor, easily resolvable merge conflicts regularly,
rather than a head-in-the-sand approach that waits to do a single massive
rebase before adding to the definitive repository. Even better would be to
rebase onto an updated master immediately and then push immediately. Work
can continue on a fresh local branch. That feels like a principle.

Principle 3.1.3 Rebase Working Branches Often. Frequently rebase
private working branches onto an up-to-date master branch.

larxiv.org/



CHAPTER 3. WITH A FEW FRIENDS 20

What does “private” mean here? We have seen that commit hashes form
a chain of repeated hashes all the way back to the root commit (Section 2.3),
and that we can identify commits by the leading digits of a commit hash. Also,
a rebase will always change some commit hashes (Principle 2.3.1). So while
the present principle advocates frequent rebases, never perform a rebase that
changes a commit hash that has been made available to somebody else. This is
the advice contained in Principle 3.1.2, and now could be a good time to back
and re-read the discussion that follows it.

We have seen how to pull from the master branch of the definitive repository,
and how to push commits to the master branch of the definitive repository. So
we have the tools for two-way communication between repositories. We can
pull from public repositories at will, but need permission to push to repositories
where we are trusted to make unilateral changes.

3.2 Conflicting Edits

Let us do one more exercise with Alice and Bob.

Checkpoint 3.2.1 Alice and Bob Edit Simultaneously. With agreement
about the recommendations, and in a rush, both Alice and Bob are going to
simultaneously perform conflicting edits in the recommendations section. We
will purposely engineer a merge conflict as an exercise, so follow the instructions
carefully.

Alice should make a new branch, named rec, for her work on the recom-
mendations. She should write three short paragraphs in recommendations. txt,
separated by blank lines, and she should commit those changes on her branch.
Bob should make a new branch, named recommend, and should also author
three short paragraphs in recommendations. txt, separated by blank lines, and
he should commit those changes on his branch. However, Alice and Bob should
collude (outside of GitHub) to have identical first and third paragraphs, but
radically different second paragraphs. Of course, this is unrealistic, but this
makes the exercise work. If you put Alice’s name into her second paragraph
someplace, and put Bob’s name into his second paragraph, the exercise will be
even more informative.

We will let Alice go first, since she got a head-start on Bob originally and
she does not yet have the section with the technical details of the vulnerability.
Alice updates her master branch from the definitive repository (origin/master),
and in doing so, she will pickup Bob’s technical section. Then she should rebase
her rec branch onto master, which will go smoothly. Then she merges rec into
her local master (which will be a fast-forward merge) and push the improved
master to origin/master.

So the definitive repository has Alice’s recommendation section, while Bob’s
recommendations are still local to his repository, and origin/master has ad-
vanced beyond Bob’s local master. Here is the transcript for Bob (again).



CHAPTER 3. WITH A FEW FRIENDS 21

bob@laptop:~/publications/banking-paper$ git checkout master
Switched to branch 'master'
Your branch is up-to-date with 'origin/master'.
bob@laptop:~/publications/banking-paper$ git pull

remote: Counting objects: 3, done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 3 (delta 1), reused 3 (delta 1), pack-reused 0
Unpacking objects: 100% (3/3), done.
From https://github.com/alice-jones/banking-paper

bceacaa..b7abe18 master -> origin/master

Updating bceacaa..b7abel8
Fast-forward

recommendations.txt | 5 +++++

1 file changed, 5 insertions(+)
bob@laptop:~/publications/banking-paper$ git checkout recommend
Switched to branch 'recommend'
bob@laptop:~/publications/banking-paper$ git rebase master
First, rewinding head to replay your work on top of it...
Applying: Bob recommends
Using index info to reconstruct a base tree...
M recommendations. txt

Falling back to patching base and 3-way merge...
Auto-merging recommendations. txt
CONFLICT (content): Merge conflict in recommendations. txt
Failed to merge in the changes.
Patch failed at 0001 Bob recommends
The copy of the patch that failed is found in:

~/publications/banking-paper/.git/rebase-apply/patch

When you have resolved this problem, run "git rebase

--continue".

If you prefer to skip this patch, run "git rebase --skip"
instead.

To check out the original branch and stop rebasing, run "git
rebase --abort".

Boom! The scariest thing that can happen in git. But you know we
engineered this conflict to happen and we are not going to panic. (If you
do want to panic, try git rebase -abort as suggested and when you collect
yourself and settle down, come back to try the rebase again.)

Your hint about where the conflict lies is in the line

CONFLICT (content): Merge conflict in recommendations.txt

Details on resolving conflicts are in Chapter 5 so head there for details on
what to do now, specifically see the instructions for a “rebase conflict” in
List 5.0.1. Briefly, Bob will open recommendations.txt in his editor and see
the two different second paragraphs adjacent to each other, with Alice’s official
second paragraph first, and his proposed second paragraph afterwards. Now
there is no notion of official or not, Bob and Alice are equals. But Alice got
there first, so Bob has the responsibility to decide which paragraph to keep, or
to keep both, and in what order. If Alice does not like Bob’s decisions, they
can do another round of changes (perhaps after some discussion on a GitHub
issue, including commit hashes in the discussion to reference the details of any
disagreement).

Done resolving the conflict, Bob’s recommend branch now comes off the tip
of master and is positioned for a fast-forward merge that he can then push to
origin/master.



CHAPTER 3. WITH A FEW FRIENDS 22

bob@laptop:~/publications/banking-paper$ git show-branch
! [master] Recs by Alice
* [recommend] Bob recommends

* [recommend] Bob recommends
+x [master] Recs by Alice
bob@laptop:~/publications/banking-paper$ git checkout master
Switched to branch 'master'
Your branch is up-to-date with 'origin/master'.
bob@laptop:~/publications/banking-paper$ git merge recommend
Updating b7abel8..3bd7a4a

Fast-forward

recommendations.txt | 4 +++-

1 file changed, 3 insertions(+), 1 deletion(-)
bob@laptop:~/publications/banking-paper$ git push

Username for 'https://github.com': bob-smith

Password for 'https://bob-smith@github.com': xXxxxxxxx
Counting objects: 3, done.

Delta compression using up to 8 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 346 bytes | @ bytes/s, done.
Total 3 (delta 1), reused 0 (delta 0)
To https://github.com/alice-jones/banking-paper.git

b7abel18..3bd7a4a master -> master

bob@laptop:~/publications/banking-paper$ git branch -d recommend
Deleted branch recommend (was 3bd7a4a).
bob@laptop:~/publications/banking-paper$ git show-branch
[master] Bob recommends

Of course, now Alice does not have the edits Bob made when adding his
recommendations and resolving the conflict in the rebase. But by now this
should be routine. Alice just pulls from origin/master and is up-to-date. Now,
all three repositories have exactly the same changes on their respective master
branches.

After these two exercises, Alice and Bob have a joint paper that they
are ready to upload to the arXiv. They can tag the final commit with the
identification information and revision number the arXiv assigns, they can
digitally sign the tag with their GPG keys, attesting to the genuineness of the
work (Section 8.4). Because the commit hashes are chained, any tampering
with any of the commits will break the digital signature. The commit hash for
this tag could be good information to include at the arXiv site as well.

Notice that Alice and Bob only had to communicate about whose account to
use for hosting the paper and on decisions about content. Never did one have
to wait on the other, nor did they pass around files with version numbers. And
since Alice pushed her recommendations to the definitive repository first, it
became Bob’s responsibility to edit a conflict locally before he could push his
idea of how the recommendations should go.

To summarize, the drill is always the same. Edit locally on a branch, update
your master by pulling from master at the definitive repository, rebase your
branch on master, while resolving any conflicts, merge your branch into master
(fast-forward), push master to the definitive repository. We call this the Eight-
Step C.0.1 and you can find a general version in our quick-reference appendix,
Appendix C.

There is just one more general git concept left, the pull request, so continue
on to Chapter 4 to see how to open up your collaborations to the long tail of
contributors from the entire world.



Chapter 4

In Control

We now turn to the situation where your book may have numerous collaborators.
Maybe your book is an anthology of short stories with thirty contributors, or
maybe it is a human anatomy textbook with the potential for students to
discover small errors for many, many years down the road. If the anatomy
textbook has four authors, you might begin as colleagues as in Chapter 3, but
later may have specialists reviewing and editing select chapters, until finally
the book is published and students suggest changes and corrections for the
inevitable Second Edition. git is flexible enough to help you at every step.

So the model here is a select few that are in control of the repository. They
might be called authors or editors, but we will refer to them generically as
overlords (WordNet: “a person who has general authority over others”). In
our opinion many projects should be large, because you want to encourage
people to contribute.

4.1 Creating a Pull Request

A pull request is a way for a contributor to provide changes to your project,
such as new material, suggestions for changes, or corrections, in an “embargoed”
way. This is perfect when the collaborator is a junior partner in your project,
or even a total stranger. As an overlord you retain control, and as a contributor
you have total freedom to craft your contribution exactly as you think it should
be, and to make it extremely easy for an overlord to accept. For the rest of
this section, we will stop supposing the project is yours, but instead, we adopt
the point-of-view of a collaborator. Here is the suggested setup.

¢ As in Chapter 3 there is one “definitive” version of the project as a git
repository. It resides on GitHub (see Appendix B). One or more people
have control over the definitive repository (the overlords). You do not
need to know who the overlords are. Everyone’s goal is to have their
changes become part of the definitive repository.

e Every person who wants to contribute to the project has a fork, which is
a git repository under their own personal account on GitHub. (Those
mysterious people who have control over the definitive repository: they
also have their own forks in their own GitHub accounts.) A fork is a
copy of the definitive repository, and your fork is completely under your
control.

23



CHAPTER 4. IN CONTROL 24

e Everyone who wants to contribute to the project also has a copy of their
fork on their own computer. (We now know of three copies of the project:
definitive, your fork on GitHub, your fork on your computer.) We will
refer to this as “the version on your laptop,” although your computer
might be a desktop machine, or something in the cloud, or something else.
(The technical term for “version on your laptop” is clone, but we will
not use that terminology. Keep in mind that the version on your laptop
was copied from your fork, not from the definitive repository.)

e The repository on each contributors’s individual laptop knows about two
repositories on GitHub:

o Their own fork, which is called origin.

o The definitive repository, which is called upstream.

Both of these repositories are known and managed as remotes within
the repository on the laptop.

To summarize, everyone has a repository on their laptop. Everyone has the same
upstream remote: it is the definitive repository. Everyone has a different origin,
which is their own personal fork (a repository) in their account on GitHub.
Notice that in Chapter 3 the origin remote was the definitive repository, but
now origin is a sort of intermediary between the repository on your laptop
and upstream, the definitive repository. (See Appendix B for details on forking
a project on GitHub and setting up your laptop with a copy.)

Once all of that is set up, you go through the exact same cycle every time
you want to contribute changes to the project. You already know how to work
with branches, and their usefullness in a personal project, or with a small group.
Chapter 6 is devoted entirely to how you can work effectively with a branch.

In a big complicated project, like a calculus textbook, there are lots of
different things that may need attention. Maybe you need to put in the solutions
to the problems from Chapter 6, or maybe you need to add a new section on
the chain rule to Chapter 4, or maybe you need to edit the introduction to
Section 5.3.

With branches, you know that you could use your repository to productively
work on all three tasks, switching between them at will. You would have three dif-
ferent branches, solutions-chap-6, chain-rule-section, intro-section5-3,
and in each branch you would be doing something a bit different.

Why is this good? There are many reasons, two of which are: (i) You do not
need to mess up the working version of the book, because you are just working
on a copy, and (ii) independent changes can be evaluated independently. Item
(ii) suggests the following principle.

Principle 4.1.1 Pull Requests Separate Creation and Approval. The
process of suggesting changes to the definitive repository of a project is separate
from the process of accepting those changes.

This may seem silly if you are thinking in terms of a single person writing
a book. But if the writing and editing is a group effort, and many people
are contributing, it makes perfect sense for all changes to require at least two
people: the person who wrote the new material, and the person who agreed
to add that material to the definitive version. Notice that the sections of this
chapter are organized exactly according to this principle.

So, you make a branch when you are about to start working on some aspect
of the document (Principle 2.2.3). You may work on that branch for just an
hour, or for several days, or off-and-on for months. You may switch to working
on other branches. If it sounds confusing at first, it will not be confusing once



CHAPTER 4. IN CONTROL 25

you start doing it, and it is totally worth it. For example, suppose you have
finished making the solutions to the problems for Chapter 6. Good, because
now you can propose those changes to be included in the definitive repository,
and it is no problem that you have not yet finished the other work you are
going, because those tasks are on different branches. And if the overlords review
your work promptly, that is nice, but if it takes them some time to do that,
you are not hung up waiting for their feedback before you can go back to to
editing your new section on the chain rule. Juggling several writing tasks has
just become a whole lot easier.

One last bit of terminology: proposing that the changes in a branch go
into the definitive version is called a pull request. As in, “I request that the
overlords pull my changes into the definitive repository.” Once the authorities
accept your pull request, the changes from your branch are now incorporated
into the definitive repository and part of the official version of the project.

Now that we know the purpose and workflow of a pull request, and how to
setup our laptop, let us describe the procedure of making a pull request. Notice
that we are leveraging what you already know about branches from Chapter 2
and what you know about pushing and pulling changes from Chapter 3. You
will go through the following recipe every time you want to contribute to a
project where an overlord will review your contribution.

List 4.1.2 Creating a Pull Request

1. git checkout master
git pull upstream master

Remember that upstream is the name your laptop has for the
definitive repository. This checkout and pull will update your local
master branch with all of the latest changes that constitute the
official version of the project.

2. git branch <branch_name>

Initate a new branch, named branch_name. Previously your branch
names were disposable, known only to you. They will now becone
part of the public workflow for you and the overlords, so concoct
something short but descriptive. (You can change this name before
making it public, Chapter 6.)

3. git checkout <branch_name>
Switch to your new branch, where you are going to work (Princi-
ple 2.2.3).

4. git add <filel1> <file2> <file3>
git commit -m "An informative message"

Edit files, and accumulate new commits, just like before. When
your branch is just the way you would like it to look, it is time to
go public. Ready?

5. git pull upstream master

While on the <branch_name> branch, you are pulling in any new
commits from the master branch of the definitive repository and
merging them into your working branch.

There is the very real possibility of a conflict in this merge. But you
would much, much rather discover this yourself now, in the privacy




CHAPTER 4. IN CONTROL 26

of your own laptop, instead of an overlord getting all geared up to
evaluate your public pull request and being immediately stymied
by discovering there is a merge conflict that will simply be handed
right back to you to resolve. When this happens, the overlord is
only going to let you know about it, and then head off to evaluate
somebody else’s pull request.

When you do have a conflict in the merge, head out to List 5.0.2
in Chapter 5 for instructions on resolving it. Now you have done
all you can. Your work is all packaged up nicely and consistent
with the absolute latest changes in the definitive repository, so
you are ready to go public.

6. git push origin <branch_name>

Remember that origin is the name your laptop has for your fork
of the project in your GitHub account. Now your fork has a new
branch, which you would like to see also incorporated into the
definitive repository.

7. Go to your fork on GitHub.

Use your browser to visit your GitHub account, and locate your
fork of the project. GitHub knows that you just put a new branch
on that fork, so you should see a prominent green button on the
right which says Compare & pull request.

Click that button and you will see a page with a text box where
you can describe the changes you have made. It is considered
polite to describe where those changes can be seen (in the final
product, not in the source files) so that the reviewer can take a
look at the effect of your changes. For example, say something
like “New exercises for Chapter 6, see page 88.”

Click the green create pull request button and you are done.
Easy, since GitHub knows who the overlords are and has already
been in touch with them about your changes.

8. git checkout master

git pull upstream master

You are ready to start on something new while you wait on the
overlords, so these two commands will reset the repository on your
laptop to be ready to begin on something new, and update your
repository with the latest changes from the definitive repository.

What might happen next? Hopefully someone with control over the
definitive repository will accept your pull request. But maybe they want you
to make some changes; perhaps they found a typo or other error. No problem:
just checkout your branch again on your laptop, edit to make the corrections,
save those changes as a new commit on the branch, and push your branch to
your fork (origin). This is the same recipe as in List 4.1.2, except that you
skip over the command that actually creates branch_name, since that branch
already exists.

Your pull request will be automatically updated and the overlords notified.
Notice that we are not changing any commits, just adding to, and extending
the branch. And anybody can look and see the record of your original proposal



CHAPTER 4. IN CONTROL 27

and your response to the overlord’s request. There is a complete record of
exactly what decisions were taken and git and GitHub make the mechanics of
the collaboration between contributor and overlord very simple.

It may happen that you (the person who created the pull request) are also
a person who has control over the definitive repository, i.e. an overlord. In that
case you can actually go to the definitive version on GitHub and accept your
own pull request. However, many projects adopt the policy that people are not
supposed to accept their own pull request, so would frown on this. This sort
of policy is a best practice, but is not enforced by git or GitHub, it is a social
construct of the organization of your project.

Even if you never aspire to be an overlord, you will find reading the next
section is helpful, since it is always a good idea to see what it is like when the
shoe is on the other foot. It also explains what you should do as a contributor
when the branch in your pull request has a conflict with the master branch due
to some changes that were introduced to master between the time you pushed
your branch and an overlord got interested in an evaluation.

4.2 Reviewing and Accepting a Pull Request

We now change our point-of-view, to assume that you, dear reader, are the
owner of the definitive repository, or have control over a definitive repository.
In other words, you are an overlord now, with responsibility for the official
version that will be produced from the definitive repository. Other people want
to contribute to your project, so they create pull requests that GitHub notifies
you about. The pull request is GitHub’s way of letting other people contribute
to your project, while still allowing you to have complete control.

Here is an annotated description of the process of reviewing and accepting
a GitHub pull request.

Locate a Pull Request on GitHub. GitHub has likely sent you a notifi-
cation immediately after a contributor has created a pull request, and maybe
that email has a link to take you directly there. But you also need to know
how to find any given pull request later.

Go to the project’s home on GitHub and see if there are any pending pull
requests. Note that you are going to the definitive repository, not your own
personal fork of the project. You have your manager-hat on now, not your
contributor-hat.

It is common to see seven tabs across the top of the repository on GitHub:

Code Issues Pull requests Wiki Pulse Graphs Settings

The first three and the last one are used most often. For Issues and Pull
requests there will be a little number telling you how many items need your
attention. Click on Pull requests. Each pull request will have a title, and it
will tell you who made the pull request and when they created it. Click on one
of the pull requests.

Initial Review of a Pull Request. If the contributor did a good job, there
will be a few sentences describing what they did, and an indication of how
their proposed changes appear in the final product, such as “New exercises for
Chapter 6, see page 88.”. Let us assume the contributor gave a clear description,
and what they describe sounds like something beneficial to your project.

Below the description you should see a check mark in a green disk, and the
phrase



CHAPTER 4. IN CONTROL 28

This branch has no conflicts with the base branch

What does that mean? A merge conflict occurs when two people modify
the same part of the same file. This could happen, for example, if a definition
had awkward wording, and two people decided to fix it at about the same time.
If they both submit pull requests, and you accept one of the pull requests,
then the other pull request will cause a merge conflict because there is no
automated way to figure out how to apply the second set changes since the
original context has been destroyed by the application of the first pull request.
(In the unlikely case that both people use the exact same wording then there
would not be a merge conflict.) Another common scenario is when two people
add new exercises to the end of an existing list. Once you accept one of these
pull requests, there is no automated way to determine where to put the second
set of new exercises. Should the second group of exercises go before the first
addition, or after the first addition? git cannot help you here, and therefore
will not help you.

Another likely explanation is that the pull request has a branch with a long
lifetime. It was created as a branch off the tip of master, but that was a long
time ago. The contributor added commits at a leisurely pace, and the overlords
took their time in getting to their pull requests (always a bad practice for an
overlord, you want happy contributors!). During this time, conceivably many
new commits have been added to the master branch and somewhere there is
an unfortunate overlap with the contributor’s edits or their context.

So a merge conflict requires a human to figure out how to resolve it. Usually
it is simple: just look at both versions and choose one, or the other, or come up
with some happy medium. Simple for a person, but impossible for a machine.

When GitHub says there is a merge conflict, it is because GitHub has done
a trial test of merging your branch in the pull request into the master branch
of the definitive repository and the trial ended badly. The usual thing to do is
scroll down to the next item on the page, which is a comment box. Write a
brief message to the contributor saying there is a merge conflict, and click the
Comment button and an email will be sent to the contributor. You should expect
the contributor to resolve the conflict (see next paragraph). Occasionally you
may choose to fix a small conflict yourself, but let us not worry about that now.

The contributor can resolve the conflict by doing

git checkout <branch_name>
git pull upstream master

So the contributor is on the branch they offered in the pull request, and it is
important to get this part right. Then the contributor pulls commits from the
master branch of the definitive repository. Several things happen as a result.
First, the contributor gets the very latest commits from the master branch
of the definitive repository, so it very up-to-date. Then git will try to merge
master into <branch_name>. This is going to end the same way as it did in
git’s trial: badly. But we expected it, were prepared for it, and git will do
everything it can to help us.

The merge of the commits pulled from master, into the contributor’s branch
will cause a merge conflict. See Chapter 5 for the general procedure for resolving
a merge conflict. Once that is done, the contributor can now push their branch
to their fork at origin and GitHub will notify the overlords that the updated
branch is ready for review.

Note: there is no need to click Close pull request. Only do that when
you really intend to reject the request. And always leave a message so that it
is clear you did not close the pull request by accident.



CHAPTER 4. IN CONTROL 29

In-depth Review of a Pull Request. Now you are looking at a pull request
with a description that sounds useful, and there are no conflicts. The next step
is to look at the actual changes the contributor made and their effect on your
project. There are three tabs below the title of the pull request:

Conversation Commits Files changed

Click on Files changed. Highlighted in red and green will be the lines which
were deleted and added (respectively) as part of this pull request. You need
to look carefully at what was written, because this is destined to become an
official part of your project. All large successful projects have standards for
writing the source material, and you should check that the author has done
a good job. Suppose, for example, you see the following line added to your
calculus textbook:

When finding a maximum, be sure to check {\em both} end points.

The author has not used the LaTeX markup language in the best way, so it
would be reasonable to click back to the Conversation tab, and in the comments
box put something like

Use \emph{...} instead of {\em ...} for emphasis.

It is a good idea to look through all of their changes and submit multiple
comments (in the same comment box), otherwise both of you will become
annoyed if you have to go back and forth several times.

Assuming you have looked through the contributor’s changes and the format
and content seems to look okay, now you need to actually check that their
contribution performs as claimed. If the project is code, that means you
need to compile and run their code. If it is a book, you need to produce
the book with their changes and see that the output looks good. Here is the
procedure for doing a preliminary review within your fork on your laptop (this
is your personal sandbox) and then actually incorporating the changes into the
definitive repository.

List 4.2.1 Reviewing and Accepting a Pull Request

1. git checkout master
git pull upstream master

You are preparing your fork on your laptop and updating to the
most recent version of the definitive repository. You should be in
the habit of doing that whenever you are about to start something
new, so it shouldn’t be a surprise that you are supposed to do that
now.

2. Click back to Conversation, and next to the big green Merge pull
request click on the blue words command line instructions. If
the GitHub user fredstro made a pull request for your calculus
repository as a branch named solutions-chap-6, then these com-
mands would look similar to:

git checkout -b fredstro-solutions-chap-6 master

git pull https://github.com/fredstro/calculus.git
solutions-chap-6

You want to run these commands for your fork on your laptop—you
could just cut them from your web browser and paste them into
your terminal session.




CHAPTER 4. IN CONTROL 30

As a result you will now have a branch in your laptop’s fork named
fredstro-solutions-chap-6 with all of the changes fredstro is
proposing. Now you can do a thorough check on the pull request.
Produce your book, or run code, or whatever is appropriate for
your project. Examine the output to see if the changes performed
as expected. Notice that you have not endangered the definitive
repository in any way, and eventually you can just delete the
branch from your fork.

3. If the contribution fails to pass your discriminating review, then
leave a comment under Conversation and the person will respond
with further changes. That scenario is quite common: people often
forget to actually verify that their changes behave as claimed before
submitting a pull request. It can also happen that the overlord
evaluating the pull request fails to actually check everything before
accepting it. Then the real blame lies with the overlord who
accepted the request, because they are in a position of responsibility
for the project. So be very careful if you accept a pull request after
only glancing at the Files changed on GitHub. Once the changes
go into the definitive repository, you and your collaborators are
responsible for them.

4. If everything looks good, then it is easy. Maybe too easy! Go
back to the definitive repository on GitHub and click the big green
Merge pull request. Modify the commit message if necessary,
and then click Confirm merge. GitHub may then say something
about deleting a branch which is no longer needed: that is a fine
thing to do.

5. Note that your laptop is still on the temporary branch you created
to check that pull request. So you should checkout master and
git pull upstream master. The master branch on your fork on
your laptop will now have the changes from the pull request you
just accepted.

If you handle a lot of pull requests you will acquire a lot of branches
which are no longer needed. We have seen earlier how to delete
branches. The temporary branches you make when you evaluate a
pull request have distinctive names, which makes it easy to identify
and delete them.

That is it! More than ninety percent of pull requests can be handled with
those simple steps. If you encounter a complicated situation, seek help from an
expert.

Large projects use a model similar to this one. Sage, an open source computer
algebra system, has hundreds of contributors with a single release manager
as the overlord. Reviews of proposed branches are distributed among the
contributors themselves, so if the release manager is familiar with the reputations
and expertise of members of the community, it can be feasible for a single
person to roll up fifty or so contributions on a weekly basis and still maintain
the integrity of the project, and their sanity.



CHAPTER 4. IN CONTROL 31

THIS 1S GIT. IT TRACKS COLLABORATIVE. LORK,
ON PROJECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. IMODEL.

CoOL. HOU DO LE VSE IT?

NO IDEA. JUST MEMORIZE. THESE SHELL
COMMANDS AND TYPE. THEM To SYNC UR
IF YOU GET ERRORS, SAVE YOUR WORK
ELSEWHERE, DELETE THE. PROJECT,
AND DOUNLOAD A FRESH COPY.

Ao

Figure 4.2.2 xked “Git™ (used with permission)

Notice that with a large project, there are many people working asyn-
chronously and the potential for conflicts is very real as the mainline branch
may advance rapidly from where a contributor initiated it. In the Sage project,
reviews are not assigned, and are voluntary. A diligent contributor might
regularly merge the master branch into their proposed branch, creating merge
commits every time, with or without any necessary edits, which are then pushed
to the public equivalent of GitHub. In this way, the contributor’s proposed
branch is always consistent with a relatively recent version of the definitive
repository. Due to this, and to the public nature of the commits on a pull
request, there will be many merge commits in such a repository. The network
of commits begins to look less like a tree, and more resembles a slow, broad,
meandering river with many branches forming, coming back together, split-
ting again, reforming,... Mathematicians refer to this network as a directed
acyclic graph, which you may see described as “the DAG”. There is always an
unambiguous path through the commits back to the original root commit.

If you have ever tried to collaborate on a writing project using email
with attachments of traditional word-processing files (with or without “track
changes”), then you may already be starting to appreciate how git’s branches
and remotes, along with GitHub’s pull requests and notifications, can free
contributors and overlords to collaborate efficiently and concentrate on content
with very little procedural friction.

Ixkcd.com/1597/


http://xkcd.com/1597/

Chapter 5

Merge Conflicts

How-to for resolving a merge conflict

git mergetool, meld

We present similar three-step recipes for a resolving conflicts that occur
either during a rebase, or during a (non-fast-forward) merge.

List 5.0.1 Resolving a Rebase Conflict

1. In the output announcing the conflict, git will list exactly which
files have merge conflicts. Open these files in your editor and
search for ========, Above and below a this line of equal signs
you will see the text that git cannot resolve itself delimited with
hints on where it comes from. Edit freely to make the text look
the way you want it, and remove the markers: «««<, ========

»H»N>,

2. git add <filel> <file2> <file3>

You need to stage your changes in the index in preparation for a
commit, as usual. At this point, git status will include

(all conflicts fixed: run "git rebase --continue")

so go ahead. Notice that you are not given an opportunity to
change the commit message, and maybe your edits make this
desirable. This can be done later, see interactive rebasing in
Chapter 6.

3. git rebase —continue

You have modified the commit that did not rewind smoothly, and
so this command tells git to continue replaying commits from
the branch, including the one it is in the midst of replaying. The
remaining commits may apply smoothly, or they may present new
conflicts. So you may go through this recipe several times.

List 5.0.2 Resolving a Merge Conflict

1. In the output announcing a merge conflict, git will list exactly
which files have merge conflicts. Open these files in your editor and
search for ========, Above and below a this line of equal signs

32



CHAPTER 5. MERGE CONFLICTS

you will see the text that git cannot resolve itself delimited with
hints on where it comes from. Edit freely to make the text look
the way you want it, and remove the markers: «««<, ========

»HN>,

. git add <filel> <file2> <file3>

You need to stage your changes in the index in preparation for a
commit, as usual.

. git commit -m "Fixing merge conflict by..."

You now create one new commit, a merge commit. Remember,
in a merge no commits change in any way. But here you do create
an additional new commit that is slightly different in nature. It
holds the changes you made to resolve the conflicts, but unlike
other commits, it has two parents, not one. These are the tips of
the two branches that are being merged. This what makes a regular
merge different from a fast-forward merge. In show-branch it will
be shown distinctively as a dash, not an asterisk or exclamation
point.

33




Chapter 6

(*) Branch Management

Reference a principle, always working on a branch
interactive rebase, total squash and rebuild commits, grafting
relative references, merge commits, etc, seen already in solo chapter
stash, "I’ll just be a minute"
branch rename, prior to public PR
cherry-pick
Rename a branch
don’t rebase through branch points, might lose one
Fancier diff commands to see whole cumulative branch

34



Chapter 7

(%) Oops!

Sections with titles describing problems, content is fixes. General overarching
advice (stop quickly, diagnostics,directory backup, reflog).

7.1 That is So Messed Up

Suppose you have really made a mess of some file, and you do not even really
know just how it happened. No problem. With a clean working directory, you
can git checkout <ref> where ref is any reference you can think of to refer
to a certain commit anywhere in your repository. This reference could be a
branch pointer, like master or heroine, or it could be the leading digits of a
commit hash that you locate in the output of git log, like 39b56cc9. This will
convert the working directory to some previous state, where your file has what
you want.

Now copy the acceptable version of the file in question to someplace outside
of your repository. Then something like git checkout giraffes will bring you
back to where you were. Now copy the file from outside the repository on top
of the messed-up one. To git the changes will look indistinguisable to you
typing at the keyboard to fix everything. Commit these changes in the usual
way as a single changeset and get back to your writing.

Your history will contain a record of whatever mistake you made, but at
least the collection of commits you had created in git allowed you to go back
and re-create something acceptably close to your original work. Note that
commiting frequently gives you greater latitude to pick just the right commit
for the recovery.

Of course, if the damage is extensive and several files are affected, you can
do the copy and replace with each one.

35



Chapter 8

Git Miscellany

This final chapter is a loose collection of tidbits that you may find useful,
without getting too technical or arcane. We have not tried to cover everything,
and we may have told you a few white lies along the way. When you exhaust
what we have here, re-read Chapter 9, and send us a pull request if you have
something useful (and not too arcane) for this chapter.

8.1 (*) Word Diff

git diff -word-diff

8.2 (*) Impersonating a Commiter

8.3 The Stash

The stash is a stack, a last-in, first-out arrangment, like a stack of plates in
a warmer in a cafeteria. At any time you can save your changes in a dirty
directory with the command git stash save and they are removed from the
working directory, thus making the directory clean again, and are saved as a
changese in the stash. This great if you just want to wander off some place else
in your repository and you will be right back to your work-in-progress. So we
talk of “stashing your changes” as a temporary measure.

When you are a beginner, the stash is very alluring. Resist the siren call. It
is not a cure-all and there is usually a better way to juggle two things at once.
Remember the three branches of Checkpoint 2.2.17 Here are some notes (which
will not explain everything carefully). Since the stash manipulates the working
directory all at once, you have less control than you do with commits, even if
the stash seems less permanent.

e git stash save - "Reworking turtle chapter" will include a message
with the entry you place on the stack. Without it, you get a cryptic
automatic message that includes the initialism WIP (work-in-progress). If
you will be away more than ten minutes, a message is a good idea.

This is like putting a plate into the warmer, perhaps with a special note
scribbled onto it.

e git stash show will show you the diff of the changeset on top.
This is like looking real closely at the top plate.

36



CHAPTER 8. GIT MISCELLANY 37

e git stash list will show you all the changesets currently in the stash,
so it helps to provide good messages if you have many.

This like like reading the notes on all the plates in the warmer.

e git stash pop will put your changes back into the working directory and
remove the entry from the stack. It is up to you to make sure you are
on the branch you want to be, and that your working directory is in the
right state to accept these changes (or you may end up starting a merge
you may not want).

This is like taking a plate out of the warmer.

e git stash apply will take the changes on the top of the stack and put
them back into the working dirtectory, but it will leave the original entry
on top of the stash. RAB once ended up with duplicate copies of a set
of changes in his working directory. He thinks he did an apply and
subsequently did a pop. Maybe.

This is like magically duplicating the plate on top, and removing it, leaving
the original still in the warmer.

e git stash drop will remove the changes on top of the stack and throw
them away. This can actually be very useful. You may add and commit
a variety of changes to your branch, but still have some paragraphs you
do not really like, and decided not to use, still polluting your working
directory. Simple. Move the changes to the stash and immediately delete
them, no message needed. Careful, think twice, you really are deleting
changes, though they may be recoverable with advanced techniques.

This is exactly like taking the top plate out and dropping it on the floor
so it breaks into many unusable pieces.

e There are many more actions you can take with the stash, but the above
should be sufficient for intermediate git use. Consult the usual sources
for more advanced use. Note that prior to the time around git version
1.6.0 changesets in the stash expired, but it appers that behavior has
changed. So don’t panic if you see older posts that speak of expiration.

8.4 (x) Tagging Releases, Signing a Repository
8.5 (%) Who Did What, and When?

blame, log with diff-filter, "When a file was added to the repo",

8.6 (*) Where Did it All Go Wrong?

git bisect

8.7 (x) File Management

rm, mv



CHAPTER 8. GIT MISCELLANY

8.8 (*) Binary Files

8.9 (x) Everything: The reflog
8.10 (¥) README on GitHub
8.11 (x) Log Display Options

—-pretty=oneline, —graph

38



Chapter 9

Parting Shot

There are often many ways to accomplish the same thing in git, and some will
be easier than others. You can find lots of advice on the Internet, some of it is
even good. Sites where answers get upvoted or downvoted are often useful. As
you gain a good understanding of the basic principles of how git works and
the job it has been designed for, you will get better at locating and evaluating
suggestions. We have tried to give you a headstart on that basic understanding.
Take notes when you find good stuff that works for you. (Much of the later
bits and pieces here are inspired by our own notes accumulated through our
first three years of gaining valuable experience with git.)

Beware of dogma. Some will say you should never rewrite history—we do
it all the time. Others will say you should always do fast-forward merges
and obtain a perfectly linear history—impossible on a big public project. Use
your independent judgement, and always remember the first of our principles,
Principle 1.0.2, git is just a tool.

But most of all, have fun and don’t panic!

39



Appendix A

Getting Started with Git

We generally prefer to use a large collection of very sharp tools to get our
work done, and it is no different with git. There are pretty point-and-click
programs that are suppose to make it easier to use and understand git, and
even GitHub will offer to do certain tasks for you. In our limited experience,
we just find these interfaces at best confusing, and downright impossible when
things go south. Thus our decision to teach you how to interact with git at
the command-line.

As it is, command-line git is already an interface to even more primitive
commands. What you and I are using in these exercises are known as the
porcelain commands, while the primitive versions are the plumbing com-
mands. You can work out the metaphor. You can find tutorials that walk
you through a sequence of plumbing commands to effect one of our porcelain
commands like a commit or merge, and you can learn a lot from the exercise.
(see [3, Chapter 10].) Don’t panic if you see some terms below that you are not
yet familiar with, they will be explained eventually.

The information in this appendix is accurate as of 2016-04-10. Corrections
and updates are greatly appreciated. How about as a pull request?

A.1 Installing Command-Line Git

We are not going to be much help here, as we are not going to try to cover
all the bases. Use your operating system’s package manager or other tools to
install command-line git. A good place to start is the download area® of the
canonical git site [1], or see the Pro Git book [3, Section 1.5].

You can verify a successful installation with:

rob@lava:~$ git -version
git version 2.5.0

Your version number will likely be different.

A.2 Configuring Git the First Time

This subsection has some one-time details you need to work through before
using git.

First you need to identify yourself as the author of commits. Even if
your repository will be private for a while, someday you may open it up to

1

40



APPENDIX A. GETTING STARTED WITH GIT 41

collaborators, and you would rather not go back and edit all of your commits.
Fortunately, git makes it easy. Use your real name, and use an email address
that you expect to own for a long time. Together, these two pieces of information
should identify you across all the repositories you will ever contribute to, and
across all the repositories ever made.

rob@lava:~$ git config -global user.name "Robert A. Beezer"
rob@lava:~$ git config —-global user.email beezer@pugetsound.edu

Notice that I use different values in practice, rather than the example here.
In the earlier days of electronic mail, my institution used the domain name
ups.edu, often confusing us with the shipping company, ups.com. So I prefer
to use the older form that I was known by in other settings for many years.
Notice the quotes around my name, in order to include the spaces as part of
the text of my name.

git is inclined to drop you into an editor for various tasks. We try to avoid
this, so often show you the -m switch, followed by a short quote-protected
message you can supply as part of a command. But you will need to use an
editor for various tasks (such as an interactive rebase) so you do not want to
suddenly find yourself in a system-default editor (like vi or emacs) that you do
not understand. I know the basics of an enhanced version of vi, known as vim,
so I use the command-line name of this program in the setting below.

rob@lava:~$ git config -global core.editor vim

There are other settings, and you can check yours with git config -list.
One last thing. If your version of git happens to be prior to version 2.0, then
check your configurations for the value of push.default and ensure that it is
simple. It will be important later.

More details, and especially for Windows systems, can be found in the Pro
Git book [3, Section 1.6]

A.3 Initializing a Git Repository

To begin a new repository, create a directory where you want your files to live.
We have been using ~/books/ppw in our examples. Then make that the default
directory in a command-line session.

rob@lava:~/books/ppw$ git init
Initialized empty Git repository in /home/rob/books/ppw/.git/

Naturally, there will be no commits in your repository.

rob@lava:~/books/ppw$ git show-branch
No revs to be shown.

But once you do make a commit, there will be a master branch and the
root commit will get special identification as such. That’s it, you are ready to

go.

A.4 Ignore Temporary Files

You can save this subsection for later. When you run git status you will
eventually become annoyed by intermediate or temporary files in your working
directory that keep being reported as untracked, and worse case, they will
obscure files you really need to know about. There is a .gitignore file (glob-
ally, or per-repository) where you can list filename patterns for git to ignore.
You can find lots of examples on the Internet (in addition to lots of custom



APPENDIX A. GETTING STARTED WITH GIT 42

configurations). I prefer not to use too much extra configuration, so that if I
end up on an unfamiliar computer, commands continue to work as I expect.



Appendix B

Getting Started with GitHub

GitHub! is a site that lets users host, and communicate with, their git reposi-
tories and the repositories of others. There are similar services, but GitHub
appears to be the most popular, and so benefits from the network effects of a
large number of users. You can make an unlimited number of public repositories,
but must pay for private repositories. Here “public” means anybody can see
the content of your repository and copy it, but you retain control over who can
modify the repository.

The information in this appendix is accurate as of 2016-04-10. Corrections
and updates are greatly appreciated. How about as a pull request?

B.1 Make An Account

This is routine, but we have one piece of advice. Choose your username with
some thought. It will be part of the URL for your repositories and others will
use it to identify you in discussions. It will also be part of a GitHub email
address you may choose to use. And so on. If you are doing professional work,
it might be best to use some variant of your real name, and if the base name
of your canonical email is available, that might be the best. You will have a
GitHub profile that you can use to disambiguate yourself.

Pick a strong password, since you would rather not have untrusted individ-
uals changing your repositories, or worse, impersonating you on GitHub and
destroying your hard-earned reputation.

B.2 Creating a New Repository on GitHub

Find a plus-sign button in the upper-right hand corner of a GitHub page, or
maybe as a new user you see a big button for creating a new repository. This
will take you to a set-up screen. You will give your repository a name. For
books, we like initialisms (lower-case), so the book you are reading has the
repository name gfa. Alice uses banking-paper in our first exercise. Like your
username and commit messages, give this name some thought.

Fill in a human-readable description if you wish, and go ahead and tick the
box for a README, which we will discuss elsewhere (Section 8.10). No need
to mess with .gitignore now, and adding a license is your choice. You’ll be
taken to the main screen for your new repository and you will see much of the
information you just provided.

Lgithub.com/

43


https://github.com/

APPENDIX B. GETTING STARTED WITH GITHUB 44

B.3 Adding Collaborators to a GitHub Reposi-
tory

In the seven tabs near the top, locate Settings, with the gear icon. This will
take you to a page with five choices in the left sidebar. Go to Collaborators.
Here you can search for and add a collaborator, who will then be able to add
commits to your repository. So make sure you understand the trust you have
placed in this person before you pull the trigger. https://github.com/rbeezer/
banking-paper.git

B.4 Copying a GitHub Repository (Forks, Clones)

For collaborators to work independently on a project, they need their own
independent copy of a repository. On GitHub you can visit somebody else’s
repository and fork that repository. This will make an entire independent
copy of that person’s repository in your account (where you have permission to
modify your copy), and GitHub will remember where your copy came from. In
this case the copy is known as a fork. Yes, the word fork has just been used as
a verb, “Cameron forked Drew’s repo”, and is also used as a noun, “Cameron’s
fork of Drew’s repo.” Making a fork of someone’s project is a compliment, since
it suggests interest, and the possibility of someday contributing back to the
project, in the style of Chapter 4.

You can also, and often may prefer, to copy a repository to your local
computer. You might like to write while on airplanes, on your desktop at work,
or on your laptop at home in bed. Then you can even collaborate with yourself
and keep all those repositories syncronized. So you could have copies of your
project all over the place.

It is easy to copy a git repository generally, and dead-simple to copy a
GitHub-hosted repository. To copy a GitHub repository, you need to know the
URL. It is a bit hidden. On the main page for a project (yours, or somebody
else’s), locate and click on the green Code button, and the URL should be
visible. You are looking for something like

https://github.com/alice-jones/banking-paper.git

which would fit our first GitHub example. Copy the URL to your clipboard.

Now open a terminal on your local machine where you can use the command-
line. Navigate to a directory, where a new repository-specific directory makes
sense for your work. In our first example, Alice might navigate to her existing
~/papers/ directory, where she expects to soon have a ~/papers/banking-paper
directory. OK, all set. Making a copy is known as a clone. (And a fork is just
a special type of clone.)

alice@work:~/papers$ git clone
https://github.com/alice-jones/banking-paper.git

Cloning into 'banking-paper'

remote: Counting objects: 3, done.

remote: Total 3 (delta @), reused @ (delta @), pack-reused @

Unpacking objects: 100% (3/3), done.

Checking connectivity... done.

The above may take a long time for a large repository (many large files, or
a long history of many, many changes). The output above is for an essentially
empty repository. Now verify the expected directory exists and has the expected
files in it.



Appendix C

Quick Reference

Cheat sheets for common tasks

List C.0.1 The Eight-Step: Adding Commits to the Definitive
Repository

We will describe the process of moving commits on a “topic” branch
in a local repository to the master branch of a definitive repository
where you have permission to push, and the repository is configured as
a remote in your local repository. Eventually, the logic of this procedure
will become second nature.

1.

git checkout master

Prepare to bring the local master branch up-to-date.

. git pull

Pull new commits from the definitive repository into the local
master branch.

. git checkout topic

Move back to the topic branch (which will have a different name).

. git rebase master

Move the branch point of the topic branch to the tip of updated
master. Resolve any conflicts which occur during the replay phase
of the rebase.

. git checkout master

Move back to the local master branch in preparation for modifying
it.

. git merge topic

Use a fast-forward merge to bring the topic branch into the master
branch.

. git branch -d topic

The topic branch pointer is obsolete as it duplicates the master
branch pointer.

. git push

Move new commits on the local master branch to the master
branch of the definitive repository.

45




Appendix D

Cheat sheet for contributing
to a project

You have forked a repository and cloned your fork to your laptop. You have
origin as a remote to your fork, and upstream as a remote to the official
repository for the project. Below are all the steps you typically need for
contributing to the project.

List D.0.1

1. git checkout master

2. git pull upstream master
Now you are on your master branch and have the latest version of
the project.

3. git branch <branchname>

4. git checkout <branchname>

Now you are on a new branch called <branchname>.

5. Make the changes you planned. When appropriate do
git add <filel> <file2> ...
git commit -m "useful commit message"

6. Check your work: run latex, or compile the code, or whatever is
appropriate for the project. Save yourself the embarrassment of
having a pull request rejected because you submitted something
broken!

7. git pull upstream master
Do that in case new material has been added since the last time
you pulled. If you pulled in new material, it can’t hurt to repeat
step Item D.0.1:6.

8. git push origin <branchname>
And then go to your fork on GitHub and make a pull request..
Be sure to describe how to see your changes in the final product.

9. When in doubt, do git status to find out what branch you are
on, and to see if there are uncommitted changes.

46



Appendix E

Cheat sheet for managing pull
requests

You are one of the people in charge of a GitHub repository. Below are the
typical steps to evaluate pull requests.

List E.0.1

1. Click on the Pull requests tab, and then choose a pull request.

2. If there are merge conflicts, write a brief message and click Comment.

Now there is nothing else to do until you get an email either
replying to your comment, or telling you that the pull request has
been updated.

3. Click on the Files changed sub-tab, and carefully look at all the
changes. If there are any errors or violations of the official style
for the project, click back to Conversation and leave a helpful
Comment.

4. If the changes look reasonable, then you have to actually check
that the new material functions as advertised. Go to your laptop
and do:

git checkout master
git pull upstream master

Then click back to Conversation and click on command line
instructions. Copy and paste those into the command line.
They will look something like this:

git checkout -b fredstro-solutions-chap-6 master
git pull https://github.com/fredstro/calculus.git
solutions-chap-6

5. Check their contribution: run latex, or compile the code, or
whatever is appropriate.
6. If you aren’t happy with what you see, leave a helpful comment.

But if everything looks good, click Merge pull request, leave a
comment if appropriate, and then click Confirm merge.

47



APPENDIX E. CHEAT SHEET FOR MANAGING PULL REQUESTS 48

7. You are done, except don’t forget to git checkout master and
then pull in the new material.




Appendix F

List of Principles

Principle 1.0.2
Principle 2.0.1
Principle 2.2.3
Principle 2.3.1
Principle 3.0.1
Principle 3.1.2
Principle 3.1.3
Principle 4.1.1

Git is a Tool

Git Manages Changes

Always Work on a Branch

A Rebase Changes Hashes, a Merge Does Not
Merge into Your Current Branch

Never Alter a Public Commit

Rebase Working Branches Often

Pull Requests Separate Creation and Approval

49



Resources

[1] @it Site, https://git-scm.com/.
[2] GitHub Site, https://github.com/.
[3] Pro Git, Scott Chacon and Ben Straub, https://git-scm.com/book/en/v2.

50


https://git-scm.com/
https://github.com/
https://git-scm.com/book/en/v2

	How to Read This Book
	Introduction
	All By Yourself
	Commits
	Branches
	Commit Hashes

	With a Few Friends
	Collaborating across Time and Space
	Conflicting Edits

	In Control
	Creating a Pull Request
	Reviewing and Accepting a Pull Request

	Merge Conflicts
	(*) Branch Management
	(*) Oops!
	That is So Messed Up

	Git Miscellany
	(*) Word Diff
	(*) Impersonating a Commiter
	The Stash
	(*) Tagging Releases, Signing a Repository
	(*) Who Did What, and When?
	(*) Where Did it All Go Wrong?
	(*) File Management
	(*) Binary Files
	(*) Everything: The reflog
	(*) README on GitHub
	(*) Log Display Options

	Parting Shot
	Appendices
	Getting Started with Git
	Installing Command-Line Git
	Configuring Git the First Time
	Initializing a Git Repository
	Ignore Temporary Files

	Getting Started with GitHub
	Make An Account
	Creating a New Repository on GitHub
	Adding Collaborators to a GitHub Repository
	Copying a GitHub Repository (Forks, Clones)

	Quick Reference
	Cheat sheet for contributing to a project
	Cheat sheet for managing pull requests
	List of Principles

	Back Matter
	Resources


