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Abstract. Given a graph G, we say that a subset D of the vertex set V is a
dominating set if it is near all the vertices, in that every vertex outside of D

is adjacent to a vertex in D. A domatic k-partition of G is a partition of V
into k dominating sets. In this paper, we will consider issues of computability

related to domatic partitions of computable graphs. Our investigation will

center on answering two types of questions for the case when k = 3. First, if
domatic 3-partitions exist in a computable graph, how complicated can they

be? Second, a decision problem: given a graph, how difficult is it to decide

whether it has a domatic 3-partition? We will completely classify this decision
problem for highly computable graphs, locally finite computable graphs, and

computable graphs in general. Specifically, we show the decision problems for

these kinds of graphs to be Π0
1-, Π0

2-, and Σ1
1-complete, respectively.

1. Introduction

Computability theory has proved to be a valuable tool in analyzing the complex-
ity of various results in graph theory (and indeed much of combinatorics — see [3]
for a nice survey). A large portion of this work has been to sort out the effective
nature of proper vertex colorings and the chromatic number of a graph. A vertex
coloring is a partition of the vertices of the graph into independent sets — ones for
which no two vertices in the set are adjacent.

The graph theoretic complementary concept to independent set is that of domi-
nating set — one for which every vertex of G not in the set is adjacent to a vertex in
the set. A partition of the vertices into dominating sets is called a domatic partition,
and the maximum number of sets in such a partition is called the domatic number
of the graph. In this paper we will investigate the complexity of domatic partitions
and domatic numbers in much the way others have looked at the complexity of
proper colorings (independent partitions) and chromatic numbers.

The k-domatic number problem, written k-DNP, is the question of whether a
given graph G has a domatic k-partition, i.e., whether the domatic number of G
is at least k. The k-domatic number problem for finite graphs is an example of
a graph partitioning problem that is known to be NP-complete when k ≥ 3, as
shown in [7]. Compare this to other questions in effective graph theory: in a 1997
paper by Hirst and Lempp [6], the authors look at graph-theoretic problems that
are NP-complete in the finite case to see if there is a pattern in the computability-
theoretic complexity of infinite versions of the same problems. They conclude that
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NP-complete problems can have infinite versions that behave vastly differently,
depending on how the infinite version of the problem is stated.

They noted that there had been recent work by Harel [5] to show that deciding
whether a given computable graph (i.e., a graph G = (V,E) in which the vertex set
V and edge relation E are computable) has a Hamilton path (NP-complete in the
finite case) is Σ1

1-complete in the infinite case. This is in contrast to the example
of deciding whether a given computable graph has an Euler path. This problem
is polynomial-time computable in the finite case, and has been shown to be Π0

3-
complete in the case of computable graphs, and Π0

2-complete in the case of highly
computable graphs (i.e., computable graphs in which every vertex has computable
degree). Hirst and Lempp demonstrate that this parity does not always occur by
showing that there is an NP-complete problem from finite complexity theory that
does not become Σ1

1-complete in some variations of the infinite case. They note that
determining whether a finite graph is 3-chromatic is NP-complete, and then show
that the set of indices of computable graphs that are 3-chromatic is Π0

2-definable,
the set of indices of finitely colorable graphs is ∆0

3 definable, and in fact, that the set
of indices of graphs with finitely colorable connected components is Π0

3-complete.
They also show, on the other hand, that the set of indices of computable graphs
with colorings that use one color infinitely often is Σ1

1-complete.
So it is not obvious how an infinite version of the k-domatic number problem will

behave (at least for k ≥ 3). Will it behave more like the Hamilton path problem
and the coloring problem when one color is used infinitely often (Σ1

1-complete), or
will it behave more like one of the coloring problems that are arithmetical? We will
resolve this question in section 4.

In this paper we will first look at the problem of deciding whether a computable
graph has a domatic 2-partition (actually polynomial-time computable in the finite
case), and then move on to the problem of deciding whether a computable graph
has a domatic k-partition for k ≥ 3. We focus on the case when k = 3. We also see
what happens when we restrict ourselves to the class of highly computable graphs
and locally finite computable graphs (i.e., computable graphs in which every vertex
has finite degree).

In addition to asking how hard it is to detect a domatic k-partition in a given
computable graph, we can also ask how complicated that domatic partition might
be. This is analogous to the work done in [1] on the difference between chromatic
number and computable chromatic number. (However, in that case, we know there
are graphs with small chromatic number and unbounded computable chromatic
number. Here, the computable domatic number could never be larger than the
classical domatic number, since it is easier to have a smaller domatic partition than
a larger one.)

2. Preliminaries

We assume that the reader is familiar with the basics of graph theory, com-
putability theory and reverse mathematics. For the basics of graph theory, we refer
the reader to Diestel [2], although the necessary definitions for domatic partitions
will be presented here. For background on computability theory we refer the reader
to Soare [10] and for reverse mathematics we refer the reader to Simpson [9].

We begin with a few necessary definitions.
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Definition 2.1. Let G be a graph with vertex set V . A subset D ⊆ V is a
dominating set if for every vertex v ∈ V \D, v is adjacent to at least one vertex in
D.

Definition 2.2. A domatic partition of a graph G is a partition of the vertices V
of G for which each class in the partition is a dominating set. The domatic number
of a graph, d(G), is the maximal number of classes of a domatic partition. We
say that G has a domatic n-partition if there is a domatic partition of G into n
dominating sets.

It is sometimes useful to view a domatic n-partition as a function from the
vertices of the graph to {0, . . . , n− 1}. This is more in line with the work done on
chromatic number, and is helpful if we wish to define domatic partitions in RCA0

for the sake of reverse mathematics.

Definition 2.3. (RCA0) We say that a function f : V → k is a domatic k-partition
of G if

(∀v1)(∀v2)[f(v1) 6= f(v2)→ (∃v3)[f(v3) = f(v2) ∧ E(v3, v1)]]

∧
k−1∧
i=0

((∃xi)[f(xi) = i]) .

Note that by this definition, we know that detecting a domatic 3-partition in a
computable graph is not harder than Σ1

1.
We wish to investigate the complexity of (finding) domatic partitions. To this

end, it will be useful to understand what features of a graph allow or disallow
domatic partitions. First notice that the domatic number of a graph is bounded by
δ(G) + 1, where δ(G) is the minimal (vertex) degree of the graph. This is because
if vertex v has degree δ(G), then it can be dominated by at most δ(G) many sets.
So the total number of dominating sets is at most δ(G) + 1 — the set that v is in,
plus one set for each of the δ(G) many neighbors of v. On the other hand, there is
a graph with domatic number 2 that has arbitrarily large minimum vertex degree,
as shown in [11].

Every graph trivially has a domatic 1-partition (the entire vertex set of the
graph forms the 1-set partition). It is easy to see that (classically) any graph with
no isolated vertices (so with δ(G) ≥ 1) has a domatic 2-partition. In fact, we will
show that this result is effective.

Proposition 2.4. Let G be a computable graph with no isolated vertices. Then
there exist computable dominating sets A and B which form a domatic partition of
G.

Proof. Let {v1, v2, . . .} be the vertices of G. We construct A and B in stages. At
stage 1, place v1 ∈ A. At stage n, place vn in either A or B, determined as follows.
Starting with v1, check whether vk is adjacent to vn for each k < n. If there is at
least one k < n such that vn is adjacent to vk and vk ∈ A, then put vn ∈ B. If
no such k exists, put vn in A. Clearly this process partitions the vertices into the
sets A and B. Further, A and B are computable — to determine whether vn ∈ A,
simply run the construction though stage n.

We claim that A and B are both dominating sets. Let vn be a vertex of G.
Suppose first that vn /∈ A. Then vn was placed in B by the construction. The only
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way this could happen is if vn was found to be adjacent to a vertex (with smaller
index) already in A. So vn is adjacent to a vertex in A. Therefore A is a dominating
set.

On the other hand, suppose vn /∈ B. Then vn was placed into A at stage n
because there was no k < n such that vk ∈ A and vk is adjacent to vn. If vn is
adjacent to some vk with k < n, then it must be that vk is in B. If not, then vn
is not adjacent to any vk with k < n. But G contains no isolated vertices, so vn
is adjacent to some vt with t > n. At stage t, we will place vt into B, since vt is
adjacent to a vertex (with smaller index) already in A, namely vn. So in either
case, vn is adjacent to a vertex in B, making B a dominating set. � �

This proposition settles both types of questions we ask in this paper. First,
given a computable graph with a domatic 2-partition, we know the graph has a
computable domatic 2-partition. Second, given a computable graph, we now know
the complexity of deciding whether or not the graph has a domatic 2-partition — it
will if and only if the graph has no isolated vertices. To say that G has an isolated
vertex is to say

∃v∀w[¬E(v, w)].

Therefore the set of indices of computable graphs with a domatic 2-partition (no
isolated vertices) is Π0

2-definable. It would be a simple matter to prove that in this
respect the decision problem is Π0

2 complete. However, the complexity present here
is due solely to the problem of determining the minimal degree for the graph. To
exclude this, we might ask for the complexity of deciding whether a graph has a
domatic 2-partition, given the graph meets the minimal degree requirement. Then
the answer is that the decision problem is computable.

The remainder of the paper will be devoted to addressing these questions for
larger numbers of partitions, where we will see the complexity can be considerably
higher.

3. Computable Domatic Number

We wonder if Proposition 2.4 can be extended to larger numbers of partitions.
That is, is there an algorithm for partitioning the graph into k dominating sets
(provided such a partition exists)? We show that even if k = 3, the answer is
no. This establishes that the domatic number of a graph need not agree with the
computable domatic number.

Proposition 3.1. There is a computable graph G with domatic number 3 con-
taining no computable domatic 3-partition (i.e., G has computable domatic number
2).

Proof. We will build a graph G computably, ensuring that G has a domatic 3-
partition while simultaneously diagonalizing against all computable functions which
appear to partition G into three sets. The final graph will consist of a collection of
gadgets: either K4 or K4 together with a fifth vertex adjacent to two of the vertices
of K4. In both cases, these gadgets have a domatic 3-partition — for the graphs
in Figure 1, each vertex is labeled with A, B, or C, denoting to which set in the
partition it belongs.
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B

Figure 1. Domatic 3-partitions on gadgets with four and five vertices

Notice that each vertex is adjacent to at least one vertex in the other two sets,
so each set in the partition is dominating. For the graph on the right, we had to
reassign vertices to sets to allow the new vertex to be dominated by the set C, but
this did not inhibit the creation of a domatic 3-partition. In fact, it is exactly this
phenomenon we will exploit.

The construction of the graph will proceed in stages. Start at stage 1, by building
a copy of K3. This will ensure that the maximal number of classes in a domatic
partition (i.e., the domatic number) of the final graph is 3. Also build a copy of K4,
and do so for each future stage. For each e ≤ s check whether ϕe(vi) has converged
for all four vertices vi in the copy of K4 built at stage e. For each such e, if ϕe
appears to partition the vertices of its copy of K4 into three sets, then we act. Such
a partition will assign each of the four vertices to one of three sets. Therefore there
will be a pair of vertices in the copy of K4 assigned to the same set. Use the first so
far unmentioned vertex and set it adjacent to these two commonly labeled vertices.
If no such e exists, simply continue with the construction. Finally, build another
copy of K4 (using four so far unmentioned vertices).

Clearly this construction gives a computable graph — to determine whether
two vertices are adjacent, simply run the construction until a stage after each are
first mentioned — the vertices will be adjacent if they are adjacent at that stage.
The constructed graph will contain a domatic 3-partition as it consists entirely of
copies of K4 or K4 plus an extra vertex as shown in Figure 1. However, there is
no computable domatic 3-partition. Suppose, for contradiction, there were. Then
it would be ϕe for some e and for each vertex vi, ϕe(vi) ∈ {A,B,C}. At some
point ϕe(vi) would converge for all four vi in the e-th copy of K4 in the graph.
Two vertices would be assigned the same set (say, without loss of generality, A).
These two vertices would be adjacent to a fifth vertex vk. Now if ϕe(vk) = B then
C is not a dominating set, since no vertex in C is adjacent to vk. Similarly, if
ϕe(vk) = C, then B is not a dominating set. Therefore ϕe cannot be a domatic
3-partition. � �

The graph constructed in the proof of Proposition 3.1 is not connected, but if
such a graph were desired, we could simply create a chain of the copies of K4 —
adding edges to a graph can only increase the domatic number.

We can do better with the following result.

Proposition 3.2. For any natural number n ≥ 2, there is a computable graph with
domatic number n which has computable domatic number 2.
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Proof. Notice that K2 works for n = 2, so fix a natural number n ≥ 3. First,
note that if a graph has a computable domatic k-partition, then the graph has a
computable domatic j-partition for each j ≤ k — put vertices in the partitions
numbered above j into the j-th partition. Thus all we need show is that there is a
computable graph with domatic number n with no computable domatic 3-partition.

The graph will be built in much the same way as the previous construction. We
build a copy of Kn at the beginning to ensure that the maximal number of classes
in a domatic partition of the final graph (i.e., the domatic number) will be n. Now
each gadget will consist of a copy of K3(n−2)+1. We wait for ϕe to partition the
vertices in its gadget into three sets. If ϕe does not do so, then it cannot be a
domatic 3-partition. If it does, then there must be at least n − 1 vertices in the
gadget belonging to the same set (out of the three). At this stage, we pick a new
vertex and connect it to the n − 1 vertices. Now this new vertex is adjacent only
to one of the three sets in the supposed partition, so there is at least one set which
does not dominate it. However, the graph created can still be partitioned into n
dominating sets by putting each of the n− 1 vertices into different sets. � �

Proposition 3.3. For any pair of natural numbers n, k such that 2 ≤ k ≤ n,
there is a computable graph with domatic number n which has computable domatic
number k.

Proof. We will build a computable graph G having the desired property. First note
that G = Kn satisfies case n = k, so assume k < n. It suffices to build a computable
graph G that has domatic number n, a computable k-partition, but no computable
(k + 1)-partition. The construction will be similar to that in Propositions 3.1 and
3.2.

Build the graph in stages, diagonalizing against ϕe, the proposed computable
domatic (k + 1)-partitions. Along the way, we build a computable domatic k-
partition p : V → {1, . . . , k}. At stage s = 0, put in a copy of Kn to ensure that
the maximal number of classes in a domatic partition (i.e., the domatic number)
of G will be n. Put in a copy of K(k+1)(n−k)+1, and we will continue putting one
of these in at every subsequent stage, calling it the gadget of that stage. Initialize
p by defining a domatic k-partition on G as follows. Starting at one vertex of the
copy of Kn, label the vertices counterclockwise 1, . . . , k, and do the same on the
gadget of s = 0.

At stage s, do the following. Put the gadget of stage s into G. Extend p in the
same way as stage 0. For each 0 ≤ e ≤ s, check whether ϕe has partitioned the
gadget of stage e into exactly k + 1 classes A1, . . . , Ak+1. If it has, “spring a trap”
as follows. Add an extra vertex v to the gadget, and connect it to n−k+1 vertices
that are in the same ϕe-class A ∈ {A1, . . . , Ak+1}. (Note that at least n − k + 1
vertices in the gadget must be in the same ϕe-class.) Connect v to k − 2 more
vertices in the gadget so that now v is connected to vertices from all but at most
one p-class — let b denote this one possibly missing p-class — this will be the p-class
for v itself. (Note that such k − 2 many vertices exist. Indeed, in the worst-case
scenario, all of the original n − k + 1 vertices connected to v will have the same
p-value c. (Note c 6= b because we assumed v is not connected to a vertex in the
p-class b.) But there will still be (k+1)(n−k)+1−(n−k+1) = k(n−k), that is at
least k (because k(n−k) ≥ k), more vertices to choose from in the gadget. And all
of the remaining k − 1 many p-classes, that is, each class in {1, . . . , k} \ {c}, must
be represented among those k or more vertices.) Finally, put v into the p-class b.
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If ϕe does not partition the gadget into exactly k + 1 classes or if we have already
sprung a trap on the gadget once, do nothing. This ends the construction.

Verification. First, G has a domatic n-partition, because (1) Kn does, (2) each
unsprung gadget (a copy of K(k+1)(n−k)+1) does (because it has at least n + 1
vertices, although only needing n), and (3) the vertex v of a sprung gadget is
connected to (n− k + 1) + (k − 2) = n− 1 many vertices on the gadget. Also, the
domatic number of G is n, because Kn does not have a domatic (n+ 1)-partition.
Next, p defines a k-partition on G, because it places all vertices adjacent to v in k−1
different classes (which include the possibly single p-class containing the original
n − k + 1 many vertices connected to v, plus the k − 2 many p-classes containing
the k− 2 many extra vertices connected to v) and places v in the final, k-th, class.

Finally, there is no computable (k + 1)-partition of G. For if there were a
computable function ϕe that partitioned the e-th gadget into exactly k+ 1 classes,
then we defeat ϕe from being a domatic partition by preventing it from dominating
the class containing v. Indeed, v is adjacent to vertices in at most k − 1 many
ϕe-classes, because the original n − k + 1 many vertices it connects to are all in a
single ϕe-class, and v connects to only k− 2 more vertices afterward. Therefore, G
has computable domatic number k. � �

Even if we restrict ourselves to the class of highly computable graphs, we cannot
extend Proposition 2.4 to a computable domatic 3-partition, as we see from the
following result.

Proposition 3.4. There is a highly computable graph with domatic number 3 which
has computable domatic number 2.

Proof. We build the graph in a similar way as before. Now each gadget will consist
of a copy of K3 with two attached vertices (as shown in Figure 2, left). These
two vertices are the start of two tails emanating from the copy of K3. At every
subsequent stage, add a vertex to one of the tails, alternating between the two tails
(v1, v3, . . . on the odd stages and v2, v4, . . . on the even stages). Either both tails
will grow indefinitely, or at a particular stage we will “spring a trap,” i.e., connect
the tails changing them into a loop (shown Figure 2, right).
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xab

c

y

v2n+1v3v1xab

c

y

v2

v4

v2n

Figure 2. Gadget of K3 with tails (left) and sprung trap (right)

Decide when to spring the trap, if at all, according to the following procedure.
Wait until ϕe has given a domatic 3-partition of the four vertices a, b, c, and y.
Notice a, b, and c must be in three different sets. Also because y will have degree
2, it must be in the same set as either a or b. If it’s a, then spring the trap on the
next stage s such that s+ 1 is divisible by 3. If it’s b, do so when s+ 2 is divisible
by 3. This ends the construction.

Notice, if we never spring the trap, then ϕe must not give a domatic 3-partition
(otherwise it would have given such a partition of a, b, c, and y at some stage), and
the gadget has a domatic 3-partition (illustrated in Figure 3).

· · ·ABCAB

C

A

B

C

...

Figure 3. Domatic 3-partition on infinite tails

The two diagrams in Figure 4 demonstrate the sprung trap when y is in the
same set as a or b, respectively. The left diagram gives an example when y and a
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are in the same class, where we spring the trap at stage say s = 5 (noting 3 divides
s− 2 = 3). The right diagram is when y and b are in the same class and we spring
the trap at stage say s = 4 (noting 3 divides s− 1 = 3).

1

B

2

A

3

C

1

B

1

A

2
B

3 C

1 B

2 A

3
C

2

A

1

B

3

C

1

A

2
B

3 C

2 A

1 B

3
C

Figure 4. Traps sprung on a computable domatic 3-partition

The diagrams in Figure 4 suggest the following facts:

i. the 3-partition that ϕe gives cannot be domatic (shown as numbers 1, 2, 3 —
we started at y and labeled the vertices in the counterclockwise direction)

ii. there is a domatic 3-partition of the gadget (shown as letters A,B,C)

Finally the graph is highly computable, because in each gadget the vertices a, b,
and c always have degree 3, and all other vertices are known to eventually have
degree 2 from inception. � �

The above results say that there is as much separation between domatic number
and computable domatic number as possible — so even in highly computable graphs
with domatic partitions, those partitions need not be computable. It is natural to
ask how complicated the domatic partitions might be. It turns out that for highly
computable graphs, the answer is not that complicated.

Proposition 3.5. Every highly computable graph with domatic number n has a
domatic n-partition of low degree.

Proof. For the purposes of the proof, we will think of n-partitions as functions
from the vertices to {0, . . . , n − 1}. Let G be a highly computable graph with
domatic number n. List the set of vertices of G as {v0, v1, v2, . . .}. We will build a
computable n-branching tree T such that the infinite paths through T correspond
to the domatic n-partitions of G. For each i ≥ 0, let Gi be the subgraph of G
containing the vertices Vi = {v0, . . . , vi} and all vertices adjacent to elements of Vi.
Suppose σ ∈ n<ω and |σ| = k + 1. Treat σ itself as an n-partition of the vertices
v0, . . . , vk. Add σ to T if and only if there is an n-partition of Gk that agrees with
σ on Vk and under which every element of Vk is dominated.

First, T is a tree, because the n-partition associated to a given σ ∈ T also serves
as an appropriate n-partition for every initial segment of σ. Next, we have:

f ∈ [T ] iff f is a domatic n-partition of G.
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The backward direction is clear. For the forward direction, given f ∈ [T ] and
vk ∈ V , take the restriction of f to the vertices of Gk. This is an n-partition of Gk
under which vk is dominated. Since vk was arbitrary, f in its entirety is a domatic
n-partition of G.

Finally, [T ] is nonempty, because G has a domatic n-partition by assumption.
So by the Low Basis Theorem, [T ] has a low element, which implies that G has a
domatic n-partition of low degree. � �

For computable locally finite (but not highly computable) graphs, we can make
a similar argument. However now the tree would be Σ0

1-computable, since when
defining Gk we need to ask whether there are any more vertices adjacent to the
given vertex of Vk. Luckily the low basis theorem relativizes, so we quickly get the
following.

Proposition 3.6. Every computable locally finite graph with domatic number n
has a domatic n-partition f with deg(f)′ ≤ 0′′.

Proof. Use ∅′ as an oracle in the proof of Prop. 3.5 along with the Relativized Low
Basis Theorem. � �

From the other side, we can argue that the degree of the domatic partition really
can be this large.

Proposition 3.7. There is a computable locally finite graph G which has a domatic
3-partition, but no domatic 3-partition computable from ∅′.

Proof. The proof will be similar to that of Proposition 3.1. We will build a trap
copy of K4 for each ∅′-computable function with the goal of diagonalizing against
these — when Φ∅

′

e looks like a domatic 3-partition on the e-th trap, we act to ensure
it is not. The difference now is that we must be able to “un-spring” a sprung trap.

Fix an enumeration of ∅′. At stage s of our construction, we only have the

computable approximation ∅′s of ∅′, so we can only compute Φ
∅′s
e,s. Now if this

halts on the four vertices of the e-th trap, we act, springing the trap as we did in
Proposition 3.1. However, at a later stage t, we might have ∅′t 6= ∅′s, and this might

cause Φ
∅′t
e,t(x) 6= Φ

∅′s
e,s(x) for some of the x in the e-th trap. In this case we must

act again to ensure that Φ
∅′t
e,t cannot possibly be a domatic 3-partition on the e-th

trap. This may happen many times, but only finitely many provided Φ∅
′

e halts on
the e-th trap.1

Now we explain how the e-th trap can get sprung and unsprung as many times

as needed. We start with K4 and wait for Φ
∅′s
e,s to halt on the four vertices. If it

ever does, then we take the two vertices it puts into the same set (say vi and vj)
and connect them via a path of 7 as yet unmentioned vertices. Doing so guarantees

vi and vj must be in different sets in any 3-partition, and as such ensures Φ
∅′s
e,s is

not a domatic 3-partition. To see this, consider the graph:

1This is because if Φ∅′
e (x) ↓ then it does so with some finite use of the oracle, and there will

be a stage s at which ∅′s = ∅′ up to that use.
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vi

vj

x

z

y

Figure 5. Possible trap sprung for the first time

Since vi and x are connected by a 2-path, any domatic 3-partition must put vi
and x in the same set. Similarly, vj and y must be put in the same set. However,
to make z dominated, x and y must be in different sets, in turn forcing vi and vj
to be in different sets.

To “un-spring” the trap, we can simply attach a triangle to z — put in two new
vertices, adjacent to each other and each adjacent to z. Now z can be dominated
by these two new vertices, releasing vertices x and y to once again possibly be in
the same set (if we want vi and vj to be in the same set). We would do this if at a

later stage t we had Φ
∅′t
e,t put vi and vj into different sets. Adding this triangle to z

does not force vi and vj to be in the same set, but rather removes any restrictions
on them. We would then spring a new trap on whichever pair of vertices from the

original K4 were placed in the same set by Φ
∅′t
e,t.

All that is left to say is how to spring the trap on a pair of vertices that we
have previously addressed. We could simply attach a new 7-vertex path, but this
increases the degree of the vertices there, which might lead to a vertex with infinite
degree (in the case that Φ∅

′

e turns out to diverge on the vertices of its K4). To
avoid this, we instead attach the 7-vertex path to the previous 7-vertex path for
the same two vertices. Using the graph in Figure 5, we would build this 7-vertex
path off of vertices x and y. This would force any domatic 3-partition to put x and
y in different sets, which in turn puts vi and vj into different sets. Figure 6 shows
what the graph might look like after we spring the trap a third time:

vk vi

vj

Figure 6. Possible trap sprung for the third time

Here we first forced vi and vj to be in different sets, then released the requirement.
Then we forced vk and vj to be in different sets, and then released that requirement
as well. Finally, we returned to vi and vj , which are currently forced to be in
different sets. This ends the construction.
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First notice that if there is no s for which Φ
∅′s
e,s converges on all four of the

original vertices of the e-th trap, then Φ∅
′

e is not a domatic 3-partition of G. Also,

if Φ
∅′s
e,s converges on the original four vertices of the e-th trap and does not produce

a domatic 3-partition, then Φ
∅′s
es cannot be a domatic 3-partition of G, but there

might be some larger s for which the computation changes and it is. So assume that
it does converge and produce a domatic 3-partition. Then we spring the trap as

described above. Then if, at some later stage t, ∅′t changes, resulting in Φ
∅′t
e,t 6= Φ

∅′s
e,s,

then Φ
∅′t
e,t could possibly be a domatic 3-partition of the sprung trap. In this case

we un-spring the sprung trap by adding a triangle and spring a different trap for

Φ
∅′t
e,t. If the computation of Φ∅

′

e is going to converge, then the computation of Φ
∅′s
e,s

can change at most finitely many times. Therefore, in the case that Φ∅
′

e converges,

eventually we will have sprung a final trap for which Φ∅
′

e is not a domatic 3-partition.
In any case, by the way we have constructed G itself, it is easy to see that G always
has a domatic 3-partition, even if the trap is sprung and unsprung infinitely often
(in this case Φ∅

′

e does not converge and therefore cannot be a domatic 3-partition
of G). � �

4. Decision Problems

We turn now to the question of how hard it is to detect a domatic partition in
a graph. We begin with the case when the vertices of G = (V,E) all have finite

degree. For a finite set of vertices V0 in a graph, define V +adj
0 to be V0 together

will all vertices adjacent to at least one vertex from V0, i.e.,

V +adj
0 := {v ∈ V : (∃u ∈ V0)[vEu]}.

Proposition 4.1. Let n ≥ 3. If G is a computable locally finite graph, then G has
a domatic n-partition iff the following condition holds:

(1) for every finite set V0 of vertices, the subgraph induced by

V +adj
0 has an n-partition in which V0 is dominated.

So the set of indices of computable locally finite graphs which have a domatic n-
partition is in Π0

2.

Proof. The forward direction is clear, as the domatic n-partition of G itself will
work for each finite set V0. To prove the backward direction, suppose (1) holds.
Let V = {v0, v1, v2, . . .} be the vertex set of G. For each k, let Vk = {v0, . . . , vk}.
We consider a finite-branching tree of n-partitions of Vk for all k (where τ extends
σ in T provided τ is an extension of σ as an n-partition). For n-partition σ on Vk,

we put σ into T if and only if σ extends to an n-partition of V +adj
k in which each

vertex in Vk is dominated.
We claim that this really is a tree: if τ ∈ T and σ is a prefix of τ , then σ ∈ T .

Now σ is a prefix of τ provided τ is an extension of σ (as an n-partition). Since

τ ∈ T , there is an n-partition of V +adj
k in which every vertex in Vk is dominated,

where Vk is the domain of τ . The extension that works for τ will also be an extension
of σ, and since the domain of σ is a subset of the domain of τ , every vertex in the
domain of σ will be dominated. Note that the tree is finite-branching because there
are finitely many n-partitions for each k.
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By (1), T is infinite. Thus by König’s Lemma, T has an infinite path f . We
claim that f is a domatic n-partition of G, that is, every vertex vk of G is dominated

by f . Indeed, fix a vertex vk. Consider V +adj
k and the restriction f̂ of f to this

finite set. We have f̂ ∈ T , since f is a path of T . But this means that f̂ has an

extension in which all the vertices of V +adj
k are dominated, including vk. Now vk is

only adjacent to vertices in V +adj
k , so in fact vk is dominated by f̂ itself and thus

by f . � �

Proposition 4.1 shows that detecting a domatic partition in a computable locally
finite graph is Π0

2-definable. The following proposition shows hardness for Π0
2, and

therefore we have classified the problem as being Π0
2-complete. Also, since the

following proposition is proved for graphs with minimal vertex degree larger than
1, we see that the Π0

2-hardness does not arise solely from vertices of degree 1.
Recall that the index set Inf = {e ∈ ω : |We| = ∞} where We denotes the e-th

c.e. set (i.e., the domain of the e-th partial computable function ϕe) is Π0
2-complete.

Proposition 4.2. There is a computable sequence of computable locally finite
graphs 〈Gi = (Vi, Ei) : i ∈ ω〉, all of which have minimal vertex degree 2, such
that e ∈ Inf if and only if Ge has a domatic 3-partition.

Proof. To build Ge for each e ∈ ω, enumerate We in stages. Dovetail the construc-
tion so that we eventually build every Ge. Fix e ∈ ω. At stage s = 0, initialize Ge
by putting in the following pair of triangles, where each triangle has a string of four
vertices as its base. Note vertices v0 and v1 labeled in Figure 7 for the purposes of
stage s+ 1.

v0

v1

Figure 7. Initialization of Ge at stage s = 0

At stage s+ 1, if We,s+1 \We,s 6= ∅, that is if an element enters We, then extend
Ge as follows. Add a string of three new vertices between v0 and v1, and append a
new triangle to the right of Ge, as in Figure 8. Otherwise, go to the next stage.
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v0

v1

Key:
v0 v1 v0 v1

=

Figure 8. Connections made in Ge when an element enters We

If e ∈ Inf, then We is infinite, and an element enters it infinitely often. So as we
demonstrate in Figure 9, Ge has a domatic 3-partition.

C

A B C A

C

B C A

C

B C A B
· · ·

If e ∈ Inf:

Key:
C B C B A C B

=

Figure 9. What Ge looks like if e ∈ Inf

On the other hand, if e 6∈ Inf, then We is finite, and there is a final triangle that
we appended to the right of Ge. So as we demonstrate in Figure 10, Ge does not
have a domatic 3-partition. To see this, note that the two vertices colored A were
forced to be colored the same if we are to have a domatic 3-partition. So without
loss of generality we indeed colored each of them A. Now the bottom vertex v2
cannot be dominated.

· · · AB

v2

CAA

If e 6∈ Inf:

Figure 10. What Ge eventually looks like if e /∈ Inf

� �
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Corollary 4.3. There is a computable sequence of computable locally finite graphs
〈Gi = (Vi, Ei) : i ∈ ω〉, with minimal vertex degree larger than one, such that ∅′′ is
computable in

{k ∈ ω : Gk has a domatic 3-partition}.

Notice that in Proposition 4.1, the defining sentence for G having a domatic
n-partition says something to the effect of “for every finite set of vertices V0, there
is a finite extension B ⊇ V0 such that in the subgraph of G induced by B, there is
a partition of the vertices of B in which each vertex of V0 is dominated.” In that
proposition this is truly a ∀∃ sentence, as we know that B is finite because G is
a locally finite graph, but we do not know the complete extent of B because even
though it is finite, we cannot computably say when we will be done enumerating
its vertices (also, it is computable to find a domatic n-partition of a finite graph).
When we look at the case in which G is a highly computable graph, we computably
know all of the neighbors of a given vertex, so given a finite set of vertices V0, we
can computably determine the subgraph of G induced by the set consisting of all
the vertices of V0 together with all of the vertices that are neighbors of vertices of
V0 (in this case, B is the set consisting of V0 together with all of its neighbors). So
the defining sentence for G having a domatic n-partition is reduced to being a ∀
sentence. Therefore the decision problem there is in Π0

1. That the decision problem
is Π0

1-complete is a corollary to the following.

Proposition 4.4. There is a computable sequence of highly computable graphs
〈Gi = (Vi, Ei) : i ∈ ω〉, all of which have minimal degree 2, such that k ∈ K iff Gk
has a domatic 3-partition.

Proof. Build the graphs Gi in stages, and dovetail their construction so that we
eventually build all the graphs. Fix k. Build Gk to be a string of connected
vertices that grows in length outwardly in both directions as the stage number of
the construction increases. At the same time, enumerate K. If k enters K, connect
the two ends of the current finite string of vertices. This turns Gk into a loop similar
to that used in the proof of Proposition 3.4. When connecting the two endpoints,
add sufficiently many vertices to ensure that no domatic 3-partition of the loop
exists (i.e., make the loop have length 1 or 2 mod 3). � �

What is perhaps surprising is that allowing vertices to have infinite degree ele-
vates the complexity of the decision problem as high as it can possibly go.

Theorem 4.5. The set of indices of computable graphs which have a domatic 3-
partition is Σ1

1-complete.

Proof. We have already seen that the set of indices of computable graphs which
have a domatic 3-partition is in Σ1

1, now we demonstrate Σ1
1-hardness. By Theorem

XX in Chapter 16 of Rogers [8], it suffices to show that given any computable tree
T , there is a computable graph G such that

(2) G has a domatic 3-partition iff T has an infinite path.

Here is how to construct G. Assume that T has elements of length at least 1.
The root node of T will be represented by v0. Adjacent to v0 are vertices v1 and
vσ for each σ ∈ T with |σ| = 1. For each n > 1 for which there is some τ ∈ T of
length n, we put in vertices vn and un with edges (vn−1, un) and (un, vn).
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Additionally, for each σ ∈ T with |σ| = n, we will have vertices vσ, vlwσ , vlσ, vrσ,
and vrwσ (the superscripts indicating the positions of the vertices relative to vσ, each
respectively standing for left wing, left, right, and right wing) with edges (vn, v

lw
σ ),

(vlwσ , v
l
σ), (vlσ, vσ), (vσ, v

r
σ), (vrσ, v

rw
σ ) and (vrwσ , vn).

Finally, whenever τ ∈ T is an immediate successor of a non-root σ ∈ T , we put
in edges (vlσ, vτ ), (vσ, vτ ), and (vrσ, vτ ).

The resulting G is not easy to draw even for simple trees, but Figure 11 shows
an example.

T

v0 v1 u2 v2

to v1

to v2

G

Figure 11. A tree T and its corresponding graph G

In G, note the instances of the 5-vertex “wing” gadget, consisting of vertices vlwσ ,
vlσ, vσ, vrσ, and vlwσ for each σ ∈ T , |σ| ≥ 1. The wing gadget is shown in Figure 12.

vlwσ

vlσ vσ vrσ

vrwσ

Figure 12. The wing gadget

For readability purposes, we placed the phrase “to vn” (for n = 1, 2) in the
picture of G, to indicate that the vertices vlwσ and vrwσ in the wing gadgets for
|σ| = n are adjacent to vn.

Note that G will be computable (given that T is). We must argue that G has
a domatic 3-partition if and only if T has an infinite path. Consider the vertices
near a single vσ with |σ| = n, |κ| = n− 1 and |τ | = n+ 1 to see what can happen.
In Figure 13, σ is a child of κ. If |σ| = 1, then the dashed edges are just a single
edge leading down to v0 (that is, vκ = v0). The dotted edges leading up to vτ only
exists if there is a vτ — if σ has a child (τ).
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vσ

vrσ
vrwσ

vn

vlwσ

vlσ

un+1 vn+1vlκ
vκ vrκ

vτvτ

vrτ
vrwτvlwτ

vlτ

Figure 13. Part of G with corresponding nodes κ, σ, and possibly
τ from T

First, for the backward direction of (2), we will show that the graph does have
a domatic 3-partition if T has an infinite path. Suppose T has an infinite path.
Construct a domatic 3-partition of G as follows. Put v0 ∈ A and v1 ∈ B. For each
σ ∈ T with |σ| = 1 put vσ ∈ B for σ off the path and vσ ∈ C for σ on the path.
Notice now that v0 is dominated, and if we partition the vqσ, q ∈ {lw, l, r, rw}, in
the obvious way (alternating A and C), we also have v1 and each vσ dominated,
for σ off the path. Additionally, all vqσ are dominated except (so far) for vlσ and vrσ
for the σ on the path — these vertices are not adjacent to any vertex in the set
B. We will fix this by putting vτ ∈ B, where τ is the element of length 2 on the
path. Notice this makes vσ now dominated, for σ on the path. For all other τ ∈ T
of length 2, we put vτ ∈ C as well as v2 ∈ C. The vqτ are alternately put into A
and B, with u2 ∈ A. Again, vτ is dominated for each τ of length 2 off the path,
as is v2 and u2. For each τ off the path, all the vqτ are dominated — we need only
worry about vlτ and vrτ for τ on the path — these are not adjacent to any vertex
in C (yet). But because τ is on the path, there is another vertex adjacent to both
these which we can put into C, which also makes vτ now dominated. And so on.

The resulting partition of this process has v0 ∈ A, vn ∈ B for odd n and vn ∈ C
for even n > 1. For each σ ∈ T not in the path, vσ ∈ B if |σ| is odd, and vσ ∈ C
if |σ| 6= 0 is even. For each σ ∈ T in the path, vσ ∈ C if |σ| is odd, and vσ ∈ B if
|σ| 6= 0 is even. All the other vertices of G are partitioned in the obvious way.

We now prove the forward direction of (2). Again referring to Figure 13, for two
strings σ and τ , we say the vertex vσ has a pyramid to the vertex vτ if the edges
(vlσ, vτ ), (vσ, vτ ), and (vrσ, vτ ) exist — of course by the construction, if one of these
edges exist, all three do.

Claim 4.5.1. Fix a string σ of length n. Let p be a 3-partition of G in which the
vertices vlwσ , vlσ, and un+1 are dominated. If p(vσ) 6= p(vn), then vσ has a pyramid
to a vertex vτ for some string τ (so τ ⊃ σ and |τ | = n+ 1), and p(vτ ) = p(vn). So
p(vτ ) 6= p(vn+1).

of Claim. Since vlwσ is dominated, vlσ and vn are in different partition sets. So
letting A,B,C denote the partition sets, without loss of generality, vlwσ is in A,
vlσ is in B, and vn is in C. Since vσ and vn are in different sets, vσ is in A or
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B. Then the degree of vlσ must be larger than 2, because neither it nor either of
the two vertices to which it is adjacent that we have thus far mentioned are in C.
Therefore, by the construction, the edge (vlσ, vτ ) exists for some string τ . So the
edges (vσ, vτ ) and (vrσ, vτ ) also exists, and vσ has a pyramid to a vertex vτ . Also
by the construction, this means that τ ⊃ σ and |τ | = n+ 1. Notice, therefore, that
p(vτ ) = C = p(vn) in order to dominate vlσ. Because un+1 is dominated, the only
two vertices to which it is adjacent cannot be in the same set, namely the vertices
vn and vn+1, so p(vτ ) = p(vn) 6= p(vn+1). � �

We will conclude the proof of the forward direction of (2) by showing that if G
has a domatic 3-partition, then T has an infinite path. To see this, fix a domatic
3-partition p of G. Let 0 denote the empty string. Recursively define an infinite
sequence {σn} of strings in T as follows:

• Let σ0 = 0 (the empty string).
• For n ≥ 1, let σn be the leftmost string σ such that σ ⊃ σn−1, |σ| = n, and
p(vσ) 6= p(vn).

We use induction to show that for every n ≥ 0, the string σn exists. The base
case n = 0 is clear. Before the induction case, we first argue the n = 1 case. Every
vertex in G is dominated, so in particular, vσ0

= v0 is dominated. So, because v0
is adjacent to v1, v0 must be adjacent to some other vertex besides v1 in a different
partition set from that of v1 (and v0 for that matter). Then by the construction
of G, there is a string σ ⊃ σ0 such that |σ| = 1 and p(vσ) 6= p(v1). Hence σ1 is
the leftmost such σ, so σ1 exists. For the induction case, fix n ≥ 1, and assume σn
exists. Since vlwσn

and vlσn
are dominated, the claim above shows there is a string

τ ⊃ σn such that |τ | = n+ 1 and p(vτ ) 6= p(vn+1). Hence σn+1 is the leftmost such
τ , so σn+1 exists.

Notice the sequence {σn} satisfies the following conditions:

i. {σn} is an infinite sequence of strings in T ;
ii. for every n ≥ 0, there is exactly one string in {σn} of length n, namely σn;

iii. for every n ≥ 0, there is an extension of string σn with length n+ 1 in the
sequence {σn}, namely σn+1.

Therefore, f : ω → ω by f(n) = σn+1(n) defines an infinite path in T , completing
the proof of the theorem. � �

5. Conclusion and Open Questions

We have confirmed that determining whether a computable graph has a domatic
3-partition is Σ1

1-complete, and is therefore at the same computational level as
determining whether a computable graph has a Hamilton path. On the other hand,
if we restrict the class of graphs to highly computable or even locally finite graphs,
then the problem is arithmetical. The complexity of those domatic partitions once
found need not be computable, although for locally finite computable or highly
computable graphs, the complexity cannot be too severe.

There are plenty of questions left for investigation. We have not addressed
questions of uniformity: if we know G has a computable domatic 3-partition, how
hard is it to locate it (given, say, an index for G)? Additionally, our decision
problems show hardness for domatic 3-partitions. Can we argue the same holds for
domatic k-partitions for any k > 2? We think the answer is yes, but the gadgets
required become considerably more intricate.
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We might also consider this topic from a reverse mathematics vantage point. For
example, by our construction in Theorem 4.5, we can use the following theorem of
Simpson [9] to prove a corollary. Note Corollary 5.2 is analogous to Theorem 20 of
Gasarch and Hirst [4], on the decision problem for Hamilton paths.

Theorem 5.1 (Simpson, Lemma 1.1, Ch VI in [9]). (RCA0) The following are
equivalent.

(1) Π1
1 comprehension.

(2) For any sequence of trees 〈Tk : k ∈ N〉, Tk ⊆ N<N, there exists a set X such
that ∀k(k ∈ X ↔ Tk has a path).

Corollary 5.2. (RCA0) The following are equivalent.

(1) Π1
1 comprehension.

(2) If 〈Gi : i ∈ N〉 is a sequence of graphs, then there is a set Z ⊆ N such that
for all i ∈ N, i ∈ Z if and only if Gi has a domatic 3-partition.
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