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Background and Motivation

The chromatic number χ(G) of a graph is the size of the
smallest partition of vertices into independent sets.
The domatic number d(G) of a graph is the size of the
largest partition of vertices into dominating sets.
A set D of vertices is dominating if every vertex not in D is
adjacent to a vertex in D.
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Main Question

Question

Can you always find a domatic n-partition of a graph with
domatic number n?

If not, is it be easier to find smaller domatic partitions?

Question (better)

Given a computable graph G with domatic number n, what is
the size of the largest computable domatic partition of G?

In other words, what is dc(G), the computable domatic number?
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If d(G) ≥ 2 then dc(G) ≥ 2.

Suppose G has a domatic 2-partition (so no isolated vertices).
There is an algorithm which produces a domatic 2-partition.

Vertices: {v0, v1, v2, . . .}

Put v0 ∈ A.

Put vn ∈ B iff there is an adjacent vertex vk ∈ A (with k < n)

A is a dominating set: if vn 6∈ A then . . .

B is a dominating set: if vn 6∈ B then . . .
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What if d(G) = 3?

Proposition

There is a computable graph G with d(G) = 3 but dc(G) = 2.

To prove this, we diagonalize against all computable functions.

What until ϕe partitions its copy of K4. If it looks like a domatic
3-partition, spring the trap.
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The sprung trap still has a 3-partition, but not the one ϕe claims.
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Worse Better than that. . .

Proposition

For any n, there is a computable graph G with domatic number
d(G) = n but dc(G) = 2.

Use K3(n−2)+1 as the trap to diagonalize against all possible
computable domatic 3-partitions.

When ϕe partitions its gadget, if it does so with three colors,
there will be n− 1 vertices colored identically. Add a vertex
adjacent to exactly those.
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Stupid ϕe

Why does ϕe partition its trap so soon?

Just because G is computable, doesn’t mean we can compute
the degree of a given vertex!

But what if we could?
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Highly computable graphs

Definition

A graph is highly computable if it is computable and the degree
function is computable.

Does this extra information help ϕe compute a domatic
partition?

Proposition

There is a highly computable graph with domatic number 3 but
computable domatic number 2.
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The idea: remotely sprung traps

Wait for ϕe to partition some fixed vertices. Then act.

Our action cannot change the degree of any vertex in the graph.

ϕe might never partition its vertices, but we don’t know that at
any finite stage.

We must be able to force ϕe’s partition to be wrong, by
modifying the graph arbitrarily far away from ϕe’s vertices.
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Highly intricate trap

A path:

Every third vertex must be colored the same.



Springing the trap



Springing the trap



Springing the trap



Springing the trap



Springing the trap



Springing the trap



Springing the trap



If d(G) = n then. . .

Proposition

There is a highly computable graph G with
d(G) = 4 but dc(G) = 3.

Proposition

For all n > 2, there is a highly computable graph with
d(G) = n but dc(G) = n− 1
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Can we do better?

Is it easier to find smaller domatic partitions in highly
computable graphs?

Conjecture

Any highly computable graph with domatic number n has
computable domatic number at least f (n).

Maybe f (n) = n− 1. Or f (n) = (n + 1)/2
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A partial result

Proposition

Every highly computable 6-regular connected graph with
domatic number 7 has a computable domatic 3-partition.

(6-regular means the degree of every vertex is 6)



Proof idea

Given a finite subgraph H, we can partition the vertices in and
adjacent to H so that every vertex in H is 7-dominated.
Start with a core H0 and an H1 surrounding H0. Partition each
(including neighbors) separately.
Now resolve the “double coloring.” If v is colored c1 and c2, color
it:

red if c1 or c2 is red, otherwise,
blue if c1 or c2 is blue or green, otherwise
yellow.
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In general. . .

Proposition

For any n and any k ≥ n2 − n + 1, any highly computable,
k − 1-regular connected graph with domatic number k has a
computable domatic n-partition.

Actually, the graphs need NOT be connected.

Getting rid of the regularity requirement appears to be much
harder.

Proving that we cannot make k smaller also appears really
difficult.
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Between computable and highly computable

In a computable graph, the neighborhood relation is
computable from K.

In a highly computable graph, the neighborhood relation is
computable.

What happens between these?

Definition (Gasarch, Lee)

A graph is A-computable provided the neighborhood relation is
computable from A.

Proposition

Let A be any non-computable c.e. set. For all n ≥ 2 there exists
an A-computable graph G with d(G) = n but dc(G) = 2.
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The End

Thanks for listening
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