Finding small domatic partitions in graphs with large domatic number

Oscar Levin

University of Northern Colorado

ASL North American Annual Meeting May 20, 2014

Joint work with Matthew Jura and Tyler Markkanen

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

The chromatic number $\chi(G)$ of a graph is the size of the smallest partition of vertices into independent sets.

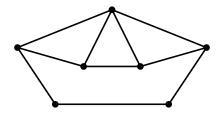
- The <u>domatic number</u> d(G) of a graph is the size of the largest partition of vertices into <u>dominating sets</u>.
- A set D of vertices is <u>dominating</u> if every vertex not in D is adjacent to a vertex in D.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

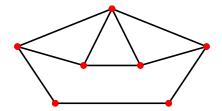
- The chromatic number $\chi(G)$ of a graph is the size of the smallest partition of vertices into independent sets.
- The <u>domatic number</u> *d*(*G*) of a graph is the size of the largest partition of vertices into <u>dominating sets</u>.
- A set D of vertices is <u>dominating</u> if every vertex not in D is adjacent to a vertex in D.

- The chromatic number $\chi(G)$ of a graph is the size of the smallest partition of vertices into independent sets.
- The <u>domatic number</u> *d*(*G*) of a graph is the size of the largest partition of vertices into <u>dominating sets</u>.
- A set D of vertices is <u>dominating</u> if every vertex not in D is adjacent to a vertex in D.

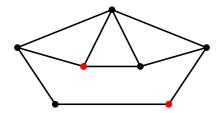
- The chromatic number $\chi(G)$ of a graph is the size of the smallest partition of vertices into independent sets.
- The <u>domatic number</u> *d*(*G*) of a graph is the size of the largest partition of vertices into <u>dominating sets</u>.
- A set D of vertices is <u>dominating</u> if every vertex not in D is adjacent to a vertex in D.



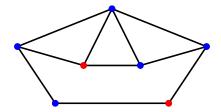
- The chromatic number $\chi(G)$ of a graph is the size of the smallest partition of vertices into independent sets.
- The <u>domatic number</u> *d*(*G*) of a graph is the size of the largest partition of vertices into <u>dominating sets</u>.
- A set D of vertices is <u>dominating</u> if every vertex not in D is adjacent to a vertex in D.



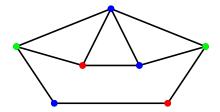
- The chromatic number $\chi(G)$ of a graph is the size of the smallest partition of vertices into independent sets.
- The <u>domatic number</u> *d*(*G*) of a graph is the size of the largest partition of vertices into <u>dominating sets</u>.
- A set D of vertices is <u>dominating</u> if every vertex not in D is adjacent to a vertex in D.



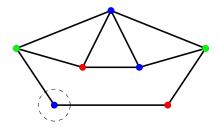
- The chromatic number $\chi(G)$ of a graph is the size of the smallest partition of vertices into independent sets.
- The <u>domatic number</u> *d*(*G*) of a graph is the size of the largest partition of vertices into <u>dominating sets</u>.
- A set D of vertices is <u>dominating</u> if every vertex not in D is adjacent to a vertex in D.



- The chromatic number $\chi(G)$ of a graph is the size of the smallest partition of vertices into independent sets.
- The <u>domatic number</u> *d*(*G*) of a graph is the size of the largest partition of vertices into <u>dominating sets</u>.
- A set D of vertices is <u>dominating</u> if every vertex not in D is adjacent to a vertex in D.



- The chromatic number $\chi(G)$ of a graph is the size of the smallest partition of vertices into independent sets.
- The <u>domatic number</u> *d*(*G*) of a graph is the size of the largest partition of vertices into <u>dominating sets</u>.
- A set D of vertices is <u>dominating</u> if every vertex not in D is adjacent to a vertex in D.



(日) (日) (日) (日) (日) (日) (日)

Question

Can you always find a domatic *n*-partition of a graph with domatic number *n*?

If not, is it be easier to find smaller domatic partitions?

Question (better)

Given a <u>computable</u> graph G with domatic number n, what is the size of the largest <u>computable</u> domatic partition of G?

In other words, what is $d^{c}(G)$, the computable domatic number?

Question

Can you always find a domatic *n*-partition of a graph with domatic number *n*?

If not, is it be easier to find smaller domatic partitions?

Question (better)

Given a <u>computable</u> graph G with domatic number n, what is the size of the largest <u>computable</u> domatic partition of G?

In other words, what is $d^{c}(G)$, the computable domatic number?

Vertices: $\{v_0, v_1, v_2, ...\}$

Put $v_0 \in A$.

Put $v_n \in B$ iff there is an adjacent vertex $v_k \in A$ (with k < n)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

A is a dominating set: if $v_n \notin A$ then ...

Vertices: $\{v_0, v_1, v_2, \ldots\}$ Put $v_0 \in A$. Put $v_n \in B$ iff there is an adjacent vertex $v_k \in A$ (with k < n)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

A is a dominating set: if $v_n \notin A$ then ... *B* is a dominating set: if $v_n \notin B$ then ...

Vertices: $\{v_0, v_1, v_2, ...\}$

Put $v_0 \in A$.

Put $v_n \in B$ iff there is an adjacent vertex $v_k \in A$ (with k < n)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

A is a dominating set: if $v_n \notin A$ then ...

B is a dominating set: if $v_n \notin B$ then ...

Vertices: $\{v_0, v_1, v_2, ...\}$

Put $v_0 \in A$.

Put $v_n \in B$ iff there is an adjacent vertex $v_k \in A$ (with k < n)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

A is a dominating set: if $v_n \not\in A$ then ...

B is a dominating set: if $v_n \notin B$ then ...

Vertices: $\{v_0, v_1, v_2, ...\}$ Put $v_0 \in A$. Put $v_n \in B$ iff there is an adjacent vertex $v_k \in A$ (with k < n)

(日) (日) (日) (日) (日) (日) (日)

A is a dominating set: if $v_n \notin A$ then ... *B* is a dominating set: if $v_n \notin B$ then ...

Vertices: $\{v_0, v_1, v_2, ...\}$ Put $v_0 \in A$. Put $v_n \in B$ iff there is an adjacent vertex $v_k \in A$ (with k < n)

(日) (日) (日) (日) (日) (日) (日)

A is a dominating set: if $v_n \notin A$ then ...

B is a dominating set: if $v_n \notin B$ then ...

Vertices: $\{v_0, v_1, v_2, ...\}$ Put $v_0 \in A$. Put $v_n \in B$ iff there is an adjacent vertex $v_k \in A$ (with k < n)

A is a dominating set: if $v_n \notin A$ then ... *B* is a dominating set: if $v_n \notin B$ then ...

There is a computable graph *G* with d(G) = 3 but $d^c(G) = 2$.

To prove this, we diagonalize against all computable functions.

What until φ_e partitions its copy of K_4 . If it looks like a domatic 3-partition, spring the trap.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

There is a computable graph *G* with d(G) = 3 but $d^c(G) = 2$.

To prove this, we diagonalize against all computable functions.

What until φ_e partitions its copy of K_4 . If it looks like a domatic 3-partition, spring the trap.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

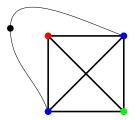
The Trap

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

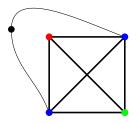
The Trap

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

The Trap

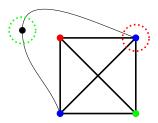


◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで



The sprung trap still has a 3-partition, but not the one φ_e claims.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



The sprung trap still has a 3-partition, but not the one φ_e claims.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For any *n*, there is a computable graph *G* with domatic number d(G) = n but $d^c(G) = 2$.

Use $K_{3(n-2)+1}$ as the trap to diagonalize against all possible computable domatic 3-partitions.

When φ_e partitions its gadget, if it does so with three colors, there will be n - 1 vertices colored identically. Add a vertex adjacent to exactly those.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

For any *n*, there is a computable graph *G* with domatic number d(G) = n but $d^c(G) = 2$.

Use $K_{3(n-2)+1}$ as the trap to diagonalize against all possible computable domatic 3-partitions.

When φ_e partitions its gadget, if it does so with three colors, there will be n - 1 vertices colored identically. Add a vertex adjacent to exactly those.

(日) (日) (日) (日) (日) (日) (日)

For any *n*, there is a computable graph *G* with domatic number d(G) = n but $d^c(G) = 2$.

Use $K_{3(n-2)+1}$ as the trap to diagonalize against all possible computable domatic 3-partitions.

When φ_e partitions its gadget, if it does so with three colors, there will be n - 1 vertices colored identically. Add a vertex adjacent to exactly those.

(日) (日) (日) (日) (日) (日) (日)

Why does φ_e partition its trap so soon?

Just because G is computable, doesn't mean we can compute the degree of a given vertex!

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

But what if we could?

Why does φ_e partition its trap so soon?

Just because *G* is computable, doesn't mean we can compute the degree of a given vertex!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

But what if we could?

Why does φ_e partition its trap so soon?

Just because *G* is computable, doesn't mean we can compute the degree of a given vertex!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

But what if we could?

Definition

A graph is <u>highly computable</u> if it is computable and the degree function is computable.

Does this extra information help φ_e compute a domatic partition?

Proposition

There is a highly computable graph with domatic number 3 but computable domatic number 2.

・ロト・日本・日本・日本・日本

Definition

A graph is <u>highly computable</u> if it is computable and the degree function is computable.

Does this extra information help φ_e compute a domatic partition?

Proposition

There is a highly computable graph with domatic number 3 but computable domatic number 2.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Wait for φ_e to partition some fixed vertices. Then act.

Our action cannot change the degree of any vertex in the graph.

 φ_e might never partition its vertices, but we don't know that at any finite stage.

We must be able to force φ_e 's partition to be wrong, by modifying the graph arbitrarily far away from φ_e 's vertices.

(日) (日) (日) (日) (日) (日) (日)

Wait for φ_e to partition some fixed vertices. Then act.

Our action cannot change the degree of any vertex in the graph.

 φ_e might never partition its vertices, but we don't know that at any finite stage.

We must be able to force φ_e 's partition to be wrong, by modifying the graph arbitrarily far away from φ_e 's vertices.

(日) (日) (日) (日) (日) (日) (日)

Wait for φ_e to partition some fixed vertices. Then act.

Our action cannot change the degree of any vertex in the graph.

 φ_e might never partition its vertices, but we don't know that at any finite stage.

We must be able to force φ_e 's partition to be wrong, by modifying the graph arbitrarily far away from φ_e 's vertices.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Wait for φ_e to partition some fixed vertices. Then act.

Our action cannot change the degree of any vertex in the graph.

 φ_e might never partition its vertices, but we don't know that at any finite stage.

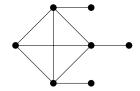
We must be able to force φ_e 's partition to be wrong, by modifying the graph arbitrarily far away from φ_e 's vertices.

(日) (日) (日) (日) (日) (日) (日)

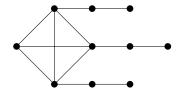
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Every third vertex must be colored the same.

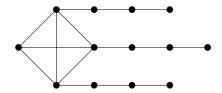
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



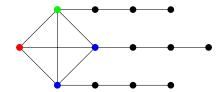
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



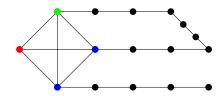
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

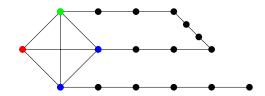


▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ▲○



▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ▲○





If d(G) = n then...

Proposition

There is a highly computable graph *G* with d(G) = 4 but $d^c(G) = 3$.

Proposition

For all n > 2, there is a highly computable graph with d(G) = n but $d^c(G) = n - 1$

If d(G) = n then...

Proposition

There is a highly computable graph *G* with d(G) = 4 but $d^c(G) = 3$.



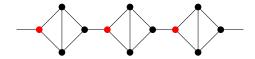
Proposition

For all n > 2, there is a highly computable graph with d(G) = n but $d^c(G) = n - 1$

If d(G) = n then...

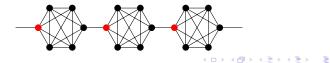
Proposition

There is a highly computable graph *G* with d(G) = 4 but $d^c(G) = 3$.



Proposition

For all n > 2, there is a highly computable graph with d(G) = n but $d^c(G) = n - 1$



Is it easier to find smaller domatic partitions in highly computable graphs?

Conjecture

Any highly computable graph with domatic number n has computable domatic number at least f(n).

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Maybe f(n) = n - 1. Or f(n) = (n + 1)/2

Is it easier to find smaller domatic partitions in highly computable graphs?

Conjecture

Any highly computable graph with domatic number n has computable domatic number at least f(n).

(日) (日) (日) (日) (日) (日) (日)

Maybe f(n) = n - 1. Or f(n) = (n + 1)/2

Is it easier to find smaller domatic partitions in highly computable graphs?

Conjecture

Any highly computable graph with domatic number n has computable domatic number at least f(n).

(日) (日) (日) (日) (日) (日) (日)

Maybe
$$f(n) = n - 1$$
. Or $f(n) = (n + 1)/2$

Every highly computable 6-regular connected graph with domatic number 7 has a computable domatic 3-partition.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

(6-regular means the degree of every vertex is 6)

Given a finite subgraph H, we can partition the vertices in and adjacent to H so that every vertex in H is 7-dominated.

Start with a core H_0 and an H_1 surrounding H_0 . Partition each (including neighbors) separately.

Now resolve the "double coloring." If v is colored c_1 and c_2 , color it:

red if c_1 or c_2 is red, otherwise,

lue if c_1 or c_2 is blue or green, otherwise

Given a finite subgraph H, we can partition the vertices in and adjacent to H so that every vertex in H is 7-dominated. Start with a core H_0 and an H_1 surrounding H_0 . Partition each (including neighbors) separately.

Now resolve the "double coloring." If v is colored c_1 and c_2 , color it:

red if c_1 or c_2 is red, otherwise,

lue if c_1 or c_2 is blue or green, otherwise

Given a finite subgraph H, we can partition the vertices in and adjacent to H so that every vertex in H is 7-dominated. Start with a core H_0 and an H_1 surrounding H_0 . Partition each (including neighbors) separately.

Now resolve the "double coloring." If v is colored c_1 and c_2 , color it:

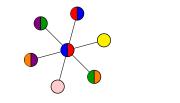
• red if c_1 or c_2 is red, otherwise,

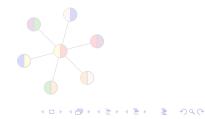
• blue if c_1 or c_2 is blue or green, otherwise

Given a finite subgraph H, we can partition the vertices in and adjacent to H so that every vertex in H is 7-dominated. Start with a core H_0 and an H_1 surrounding H_0 . Partition each (including neighbors) separately.

Now resolve the "double coloring." If v is colored c_1 and c_2 , color it:

- red if c_1 or c_2 is red, otherwise,
- blue if c_1 or c_2 is blue or green, otherwise

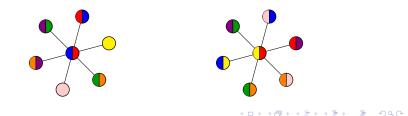




Given a finite subgraph H, we can partition the vertices in and adjacent to H so that every vertex in H is 7-dominated. Start with a core H_0 and an H_1 surrounding H_0 . Partition each (including neighbors) separately.

Now resolve the "double coloring." If v is colored c_1 and c_2 , color it:

- red if c_1 or c_2 is red, otherwise,
- **blue** if c_1 or c_2 is blue or green, otherwise



For any *n* and any $k \ge n^2 - n + 1$, any highly computable, k - 1-regular connected graph with domatic number *k* has a computable domatic *n*-partition.

Actually, the graphs need NOT be connected.

Getting rid of the regularity requirement appears to be much harder.

Proving that we cannot make *k* smaller also appears really difficult.

(日) (日) (日) (日) (日) (日) (日)

For any *n* and any $k \ge n^2 - n + 1$, any highly computable, k - 1-regular connected graph with domatic number *k* has a computable domatic *n*-partition.

Actually, the graphs need NOT be connected.

Getting rid of the regularity requirement appears to be much harder.

Proving that we cannot make *k* smaller also appears really difficult.

For any *n* and any $k \ge n^2 - n + 1$, any highly computable, k - 1-regular connected graph with domatic number *k* has a computable domatic *n*-partition.

Actually, the graphs need NOT be connected.

Getting rid of the regularity requirement appears to be much harder.

Proving that we cannot make *k* smaller also appears really difficult.

(日) (日) (日) (日) (日) (日) (日)

For any *n* and any $k \ge n^2 - n + 1$, any highly computable, k - 1-regular connected graph with domatic number *k* has a computable domatic *n*-partition.

Actually, the graphs need NOT be connected.

Getting rid of the regularity requirement appears to be much harder.

Proving that we cannot make *k* smaller also appears really difficult.

(日) (日) (日) (日) (日) (日) (日)

Between computable and highly computable

In a computable graph, the neighborhood relation is computable from *K*.

In a highly computable graph, the neighborhood relation is computable.

What happens between these?

Definition (Gasarch, Lee)

A graph is *A*-computable provided the neighborhood relation is computable from *A*.

Proposition

Let *A* be any non-computable c.e. set. For all $n \ge 2$ there exists an *A*-computable graph *G* with d(G) = n but $d^c(G) = 2$.

Between computable and highly computable

In a computable graph, the neighborhood relation is computable from *K*.

In a highly computable graph, the neighborhood relation is computable.

What happens between these?

Definition (Gasarch, Lee)

A graph is *A*-computable provided the neighborhood relation is computable from *A*.

Proposition

Let *A* be any non-computable c.e. set. For all $n \ge 2$ there exists an *A*-computable graph *G* with d(G) = n but $d^c(G) = 2$.

Between computable and highly computable

In a computable graph, the neighborhood relation is computable from K.

In a highly computable graph, the neighborhood relation is computable.

What happens between these?

Definition (Gasarch, Lee)

A graph is *A*-computable provided the neighborhood relation is computable from *A*.

Proposition

Let *A* be any non-computable c.e. set. For all $n \ge 2$ there exists an *A*-computable graph *G* with d(G) = n but $d^c(G) = 2$. Thanks for listening

