Subsection Arithmetic and Geometric Sequences
Investigate!
For the patterns of dots below, draw the next pattern in the sequence. Describe the rate of growth of the number of dots in the pattern. Then give guess a recursive definition and a closed formula for the number of dots in the \(n\)th pattern.
Our goal is to find closed formulas for sequences. Our primary strategy will be to first determine how the sequence is changing from term to term. This will lead to a recurrence relation for the sequence, and from that recurrence relation, we will find a closed formula. We start with two types of sequences that are particularly common and useful: arithmetic and geometric sequences.
Suppose you start a business selling prints of mathematical art. In week zero, you sell one print. Each week after that, you sell four more prints than you did the previous week. How many prints will you sell in the \(n\)th week?
We can easily compute the first few terms of the sequence: \(1, 5, 9, 13,\ldots\text{.}\) How do I know this is correct? From the problem, we see that to get from one term to the next, we must add 4. I is clear then that the recurrence relation for the sequence is
\begin{equation*}
a_n = a_{n-1} + 4\text{.}
\end{equation*}
The rate of growth for the sequence is the constant \(4\text{,}\) since the difference between any two terms is 4 (note, we could write the recurrence relation as \(a_n - a_{n-1} = 4\)).
We call sequences with a constant rate of change arithmetic sequences.
Now let’s find a closed formula for our sequence. The first term is \(a_0 = 1\text{.}\) To get \(a_1\text{,}\) we add \(4\text{.}\) The next term requires us to add \(4\) again, which means we have added \(4\) to our initial term twice. Then we add \(4\) again, for a total of three times for \(a_3\text{.}\) In fact, to get \(a_n\text{,}\) we will have added \(4\) to \(a_0\) a total of \(n\) times. Thus, the closed formula for the sequence is
\begin{equation*}
a_n = 1 + 4n\text{.}
\end{equation*}
This works for any arithmetic sequence. That is, any sequence with a constant difference will have a linear closed formula, where the “slope” of the linear function is the common difference.
Arithmetic Sequences.
If the terms of a sequence differ by a constant, we say the sequence is arithmetic. If the initial term (\(a_0\)) of the sequence is \(a\) and the common difference is \(d\text{,}\) then we have,
Recursive definition: \(a_n = a_{n-1} + d\) with \(a_0 = a\text{.}\)
Closed formula: \(a_n = a + dn\text{.}\)
As we did for our example above, for the recursive definition, we need to specify \(a_0\text{.}\) Then we need to express \(a_n\) in terms of \(a_{n-1}\text{.}\) If we call the first term \(a\text{,}\) then \(a_0 = a\text{.}\) For the recurrence relation, by the definition of an arithmetic sequence, the difference between successive terms is some constant, say \(d\text{.}\) So \(a_n - a_{n-1} = d\text{,}\) or in other words,
\begin{equation*}
a_0 = a \qquad a_n=a_{n-1}+d\text{.}
\end{equation*}
To find a closed formula, first write out the sequence in general:
\begin{align*}
a_0 \amp = a\\
a_1 \amp = a_0 + d = a+d\\
a_2 \amp = a_1 + d = a+d+d = a+2d\\
a_3 \amp = a_2 + d = a+2d+d = a+3d\\
\amp \vdots
\end{align*}
We see that to find the \(n\)th term, we need to start with \(a\) and then add \(d\) a bunch of times. In fact, add it \(n\) times. Thus \(a_n = a+dn\text{.}\)
Example 4.2.1.
Find recursive definitions and closed formulas for the arithmetic sequences below. Assume the first term listed is \(a_0\text{.}\)
\(2, 5, 8, 11, 14, \ldots\text{.}\)
\(50, 43, 36, 29, \ldots\text{.}\)
Solution.
First we should check that these sequences really are arithmetic by taking differences of successive terms. Doing so will reveal the common difference \(d\text{.}\)
\(5-2 = 3\text{,}\) \(8-5 = 3\text{,}\) etc. To get from each term to the next, we add three, so \(d = 3\text{.}\) The recursive definition is therefore \(a_n = a_{n-1} + 3\) with \(a_0 = 2\text{.}\) The closed formula is \(a_n = 2 + 3n\text{.}\)
Here the common difference is \(-7\text{,}\) since we add \(-7\) to 50 to get 43, and so on. Thus we have a recursive definition of \(a_n = a_{n-1} - 7\) with \(a_0 = 50\text{.}\) The closed formula is \(a_n = 50 - 7n\text{.}\)
What about sequences like \(2, 6, 18, 54, \ldots\text{?}\) This is not arithmetic because the difference between terms is not constant. However, the ratio between successive terms is constant. We call such sequences geometric.
The recursive definition for the geometric sequence with initial term \(a\) and common ratio \(r\) is \(a_n = a_{n-1}\cdot r; a_0 = a\text{.}\) To get the next term we multiply the previous term by \(r\text{.}\) We can find the closed formula like we did for the arithmetic progression. Write
\begin{align*}
a_0 \amp = a\\
a_1 \amp = a_0\cdot r\\
a_2 \amp = a_1 \cdot r = a_0\cdot r\cdot r = a_0\cdot r^2\\
\amp \vdots
\end{align*}
We must multiply the first term \(a\) by \(r\) a number of times, \(n\) times to be precise. We get \(a_n = a\cdot r^{n}\text{.}\)
Geometric Sequences.
A sequence is called geometric if the ratio between successive terms is constant. Suppose the initial term \(a_0\) is \(a\) and the common ratio is \(r\text{.}\) Then we have,
Recursive definition: \(a_n = ra_{n-1}\) with \(a_0 = a\text{.}\)
Closed formula: \(a_n = a\cdot r^{n}\text{.}\)
Example 4.2.2.
Find the recursive and closed formula for the geometric sequences below. Again, the first term listed is \(a_0\text{.}\)
\(\displaystyle 3, 6, 12, 24, 48, \ldots\)
\(\displaystyle 27, 9, 3, 1, 1/3, \ldots\)
Solution.
Start by checking that these sequences really are geometric by dividing each term by its previous term. If this ratio really is constant, we will have found \(r\text{.}\)
\(6/3 = 2\text{,}\) \(12/6 = 2\text{,}\) \(24/12 = 2\text{,}\) etc. Yes, to get from any term to the next, we multiply by \(r = 2\text{.}\) So the recursive definition is \(a_n = 2a_{n-1}\) with \(a_0 = 3\text{.}\) The closed formula is \(a_n = 3\cdot 2^{n}\text{.}\)
The common ratio is \(r = 1/3\text{.}\) So the sequence has recursive definition \(a_n = \frac{1}{3}a_{n-1}\) with \(a_0 = 27\) and closed formula \(a_n = 27\cdot \frac{1}{3}^{n}\text{.}\)
Geometric sequences are those which have a growth rate that is proportional to the sequence itself. Just like you might have seen in Calculus, it is exactly the exponential functions that have this property.
In the examples and formulas above, we assumed that the initial term was \(a_0\text{.}\) If your sequence starts with \(a_1\text{,}\) you can easily find the term that would have been \(a_0\) and use that in the formula. For example, if we want a formula for the sequence \(2, 5, 8,\ldots\) and insist that \(2= a_1\text{,}\) then we can find \(a_0 = -1\) (since the sequence is arithmetic with common difference 3, we have \(a_0 + 3 = a_1\)). Then the closed formula will be \(a_n = -1 + 3n\text{.}\)
Exercises Additional Exercises
1.
Is there a pair of integers \((a,b)\) such that \(a,
x_1, y_1, b\) is part of an arithmetic sequences and \(a,
x_2, y_2, b\) is part of a geometric sequence with \(x_1, x_2, y_1, y_2\) all integers?
2.
Consider the sequence \(2, 7, 15, 26, 40, 57, \ldots\) (with \(a_0 = 2\)). By looking at the differences between terms, express the sequence as a sequence of partial sums. Then find a closed formula for the sequence by computing the \(n\)th partial sum.
Solution.
We have \(2 = 2\text{,}\) \(7 = 2+5\text{,}\) \(15 = 2 + 5 + 8\text{,}\) \(26 = 2+5+8+11\text{,}\) and so on. The terms in the sums are given by the arithmetic sequence \(b_n = 2+3n\text{.}\) In other words, \(a_n = \sum_{k=0}^n (2+3k)\text{.}\) To find the closed formula, we reverse and add. We get \(a_n = \frac{(4+3n)(n+1)}{2}\) (we have \(n+1\) there because there are \(n+1\) terms in the sum for \(a_n\)).
3.
Starting with any rectangle, we can create a new, larger rectangle by attaching a square to the longer side. For example, if we start with a \(2\times 5\) rectangle, we would glue on a \(5\times 5\) square, forming a \(5 \times 7\) rectangle:
The next rectangle would be formed by attaching a \(7 \times 7\) square to the top or bottom of the \(5\times 7\) rectangle.
Create a sequence of rectangles using this rule starting with a \(1\times 2\) rectangle. Then write out the sequence of perimeters for the rectangles (the first term of the sequence would be 6, since the perimeter of a \(1\times 2\) rectangle is 6 - the next term would be 10).
Repeat the above part this time starting with a \(1 \times 3\) rectangle.
Find recursive formulas for each of the sequences of perimeters you found in parts (a) and (b). Don’t forget to give the initial conditions as well.
Are the sequences arithmetic? Geometric? If not, are they close to being either of these (i.e., are the differences or ratios almost constant)? Explain.
4.
If you have enough toothpicks, you can make a large triangular grid. Below, are the triangular grids of size 1 and of size 2. The size 1 grid requires 3 toothpicks, the size 2 grid requires 9 toothpicks.
Let \(t_n\) be the number of toothpicks required to make a size \(n\) triangular grid. Write out the first 5 terms of the sequence \(t_1, t_2, \ldots\text{.}\)
Find a recursive definition for the sequence. Explain why you are correct.
Is the sequence arithmetic or geometric? If not, is it the sequence of partial sums of an arithmetic or geometric sequence? Explain why your answer is correct.
Use your results from part (c) to find a closed formula for the sequence. Show your work.
5.
If you were to shade in a \(n\times n\) square on graph paper, you could do it the boring way (with sides parallel to the edge of the paper) or the interesting way, as illustrated below:
The interesting thing here, is that a \(3\times 3\) square now has area 13. Our goal is the find a formula for the area of a \(n \times n\) (diagonal) square.
Write out the first few terms of the sequence of areas (assume \(a_1 = 1\text{,}\) \(a_2 = 5\text{,}\) etc). Is the sequence arithmetic or geometric? If not, is it the sequence of partial sums of an arithmetic or geometric sequence? Explain why your answer is correct, referring to the diagonal squares.
Use your results from part (a) to find a closed formula for the sequence. Show your work. Note, while there are lots of ways to find a closed formula here, you should use partial sums specifically.
Find the closed formula in as many other interesting ways as you can.
6.
Here is a surprising use of sequences to answer a counting question: How many license plates consist of 6 symbols, using only the three numerals 1, 2, and 3 and the four letters a, b, c, and d, so that no numeral appears after any letter? For example, “31ddac”, “123321”, and “ababab” are each acceptable license plates, but “13ba2c” is not.
First answer this question by considering different cases: how many of the license plates contain no numerals? How many contain one numeral, etc.
Now use the techniques of this section to show why the answer is \(4^7 - 3^7\text{.}\)