Skip to main content\(\def\d{\displaystyle }
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Worksheet Global Optimization
1.
Let
\(g(x) = \frac{1}{3}x^3 - 2x + 2\text{.}\)
(a)
Find all critical numbers of
\(g\) that lie in the interval
\(-2 \le x \le 3\text{.}\)
(b)
Use a Desmos or a graphing calculate to the graph of
\(g\) on the interval
\(-2 \le x \le 3\text{.}\)
From the graph, determine the
\(x\)-values at which the absolute minimum and absolute maximum of
\(g\) occur on the interval
\([-2,3]\text{.}\)
(c)
How do your answers change if we instead consider the interval
\(-2 \le x \le 2\text{?}\)
(d)
What if we instead consider the interval
\(-2 \le x \le 1\text{?}\)
2.
Find the global maximum and minimum of
\(f(x) = \dfrac{x^2}{x-2}\) on the interval
\([3,7]\text{.}\)